日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=Asin(φx+φ) (A>0,φ>0,|φ|<數(shù)學公式)的圖象與y軸的交點為(0,數(shù)學公式),它在y軸右側(cè)的第一個最大值點和最小值點分別為(x0,3)、(x0+2π,-3)
          (I)求函數(shù)y=f(x)的解析式;
          (II)求這個函數(shù)的對稱中心的坐標和對稱軸方程;
          (III)求f(x)在x∈[0,π]時的值域.

          解:(I) 由題意可得A=3,由在y軸右側(cè)的第一個最大值點和最小值點分別為(x0,3),(x0+2π,-3),
          可得=x0+2π-x0=2π,∴T=4π,從而ω=
          又圖象與y軸交于點(0,),∴=3sinφ,故有 sinφ=
          由于|φ|<),∴φ=,故 函數(shù)的解析式為f(x)=3sin(x+).
          (II)因為由x+=kπ,k∈Z,解得x=-+2kπ,(k∈Z),所以函數(shù)的對稱中心:(-+2kπ,0)(k∈Z).
          因為由x+=kπ+,k∈Z,解得x=2kπ+,故函數(shù)的對稱軸方程為 x=2kπ+,k∈Z.
          (III)∵x∈[0,π],∴x+∈[,],故當 x+=時,函數(shù)取得最小值為3×=;
          x+= 時,函數(shù)取得最大值為 3.
          綜上可得,函數(shù)的值域為[,3].
          分析:(I)通過函數(shù)的最大值點求出A,最大值與最小值的橫坐標求出函數(shù)的周期,然后求出ω,利用函數(shù)經(jīng)過(0,),以及φ的范圍,求出φ,然后得到函數(shù)y=f(x)的解析式.
          (II)因為由x+=kπ,k∈Z,解得x的值,可得函數(shù)的對稱中心的坐標.由x+=kπ+,k∈Z,解得x的值,可得函數(shù)的對稱軸方程.
          (III)由 x∈[0,π],可得 x+∈[,],可得 sin(x+)的最大值與最小值,由此求得函數(shù)f(x)=3sin(x+)的值域.
          點評:本題是中檔題,考查三角函數(shù)的解析式的求法,注意A,ω,φ的求法,函數(shù)的單調(diào)增區(qū)間的求法,考查計算能力,注意平移時x的系數(shù),避免錯誤.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習冊答案