日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:函數(shù)f(x)=x2+4x+3 (x∈R),g(x)與f(x)圖象關(guān)于直線x=1對稱.
          (1)求g(x);
          (2)如果關(guān)于x的不等式 g(x)≥g(a)-4的解集為全體實數(shù),求a的最大值.

          解:(1)設(shè)P(x,y)為y=g(x)上任一點,(1分)
          ∵y=g(x)與y=f(x)關(guān)于x=1對稱,
          ∴P(x,y)關(guān)于x=1的對稱點P′(2-x,y)在y=f(x)的圖象上,(3分)
          ∵f(x)=x2+4x+3
          ∴y=(2-x)2+(2-x)+3=x2-8x+15
          即g(x)=x2-8x+15(2分)
          (2)解法一:由關(guān)于x的不等式 g(x)≥g(a)-4的解集為全體實數(shù),
          又因為g(x)的最小值為-1(2分)
          即:g(a)-4≤-1(3分)
          a2-8a+15-4≤-1
          a2-8a+12≤0
          2≤a≤6(2分)
          a的最大值6(1分)
          解法二:由g(x)≥g(a)-4
          得:x2-8x+15≥a2-8a+15-4(1分)
          x2-8x-(a2-8a-4)≥0(1分)
          因為不等式的解集為全體實數(shù)
          即:△=64-4(a2-8a-4)≤0(3分)
          a2-8a+12≤0(1分)
          2≤a≤6(1分)
          a的最大值6(1分)
          分析:(1)設(shè)P(x,y)為y=g(x)上任一點,由已知中g(shù)(x)與f(x)圖象關(guān)于直線x=1對稱,可得P(x,y)關(guān)于x=1的對稱點P′(2-x,y)在y=f(x)的圖象上,滿足y=f(x)的解析式,代入整理即可得到函數(shù)g(x)的解析式
          (2)解法一:由(1)中結(jié)論,我們g(x)的最小值為-1,故可由g(x)≥g(a)-4的解集為全體實數(shù),構(gòu)造出一個關(guān)于a的不等式g(a)-4≤-1,解不等式即可得到答案;
          解法二:由關(guān)于x的不等式 g(x)≥g(a)-4的解集為全體實數(shù),根據(jù)二次不等式恒成立的充要條件,我們可以構(gòu)造一個關(guān)于a的不等式,解不等式即可得a的最大值.
          點評:本題考查的知識點是二次函數(shù)的性質(zhì),函數(shù)解析式的求解及常用方法,函數(shù)恒成立問題,其中(1)中坐標法,求曲線的軌跡方程時,最常用的方法,一定要熟練掌握.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
          π2
          ],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
          (1)解不等式f(x)>0;
          (2)求M∩N.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知奇函數(shù)f(x)的定義域為(-1,1),當x∈(0,1)時,f(x)=
          2x2x+1

          (1)求f(x)在(-1,1)上的解析式;
          (2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知冪函數(shù)f(x)=xa的圖象過點(
          1
          2
          ,
          2
          2
          )
          ,則f(x)在(0,+∞)單調(diào)遞

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
          (1)①證明:a3-b3=(a-b)(a2+ab+b2
          ②求函數(shù)f(x)兩個極值點所對應(yīng)的圖象上兩點之間的距離;
          (2)設(shè)函數(shù)g(x)=exf(x)有三個不同的極值點,求t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案