日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB中點.
          (1)求證:AC1∥平面CDB1
          (2)求異面直線AC1與B1C所成角的余弦值;
          (3)求二面角B-AC1-C的正切值.
          分析:(1)連接C1B交CB1于O點,要證AC1∥平面CDB1,只需證明AC1平行平面CDB1內(nèi)的直線DO即可.
          (2)由(1)知DO∥AC1,∠COD就是異面直線AC1與B1C所成的角.利用余弦定理求異面直線AC1與B1C所成角的余弦值;
          (3)在側面ACC1A1內(nèi)過C作CE⊥AC1于E,連接BE,說明∠BEC就是二面角B-AC1-C的平面角,然后求二面角B-AC1-C的正切值.
          解答:解:(1)證明:連接C1B交CB1于O點,
          由已知四邊形BCC1B1為矩形,
          ∴O為C1B的中點,又D為AB的中點,
          連接DO,則DO∥AC1,
          而AC1?面B1CD,DO?面B1CD,
          ∴AC1∥面CDB1.(5分)
          (2)解:由(1)知DO∥AC1,
          ∴∠COD就是異面直線AC1與B1C所成的角.
          依題設知:CD=
          1
          2
          AB=
          5
          2
          ,CO=
          1
          2
          CB1=2
          2
          ,DO=
          1
          2
          AC1=
          5
          2
          ,
          Cos∠COD=
          CO2+DO2-CD2
          2•CO•DO
          =
          8+
          25
          4
          -
          25
          4
          2•2
          2
          5
          2
          =
          2
          2
          5

          即異面直線AC1與B1C所成角的余弦值為
          2
          2
          5
          .(9分)
          (3)解:依題設BC⊥側面ACC1A1,則在側面ACC1A1內(nèi)過C作CE⊥AC1于E,連接BE,由AC1⊥面BCE知AC1⊥BE,∴∠BEC就是二面角B-AC1-C的平面角.在Rt△BCE中,BC=4,CE=
          3×4
          5
          ,∴tan∠BEC=
          BC
          CE
          =
          5
          3
          ,即二面角B-AC1-C的正切值為
          5
          3
          點評:本題考查直線與平面的垂直的判定,二面角的求法,異面直線所成的角,考查空間想象能力,邏輯思維能力,是中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          同步練習冊答案