日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】棉花的纖維長度是評價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)

          纖維長度

          甲地(根數(shù))

          3

          4

          4

          5

          4

          乙地(根數(shù))

          1

          1

          2

          10

          6

          (1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

          甲地

          乙地

          總計(jì)

          長纖維

          短纖維

          總計(jì)

          附:(1);

          (2)臨界值表;

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.

          【答案】(1)在犯錯誤概率不超過的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.(2)見解析

          【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨(dú)立性檢驗(yàn)知識可作出判斷;(2)寫出的所有可能取值,并求出對應(yīng)的概率,可列出分布列并進(jìn)一步求出的數(shù)學(xué)期望.試題解析:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:

          甲地

          乙地

          總計(jì)

          長纖維

          9

          16

          25

          短纖維

          11

          4

          15

          總計(jì)

          20

          20

          40

          根據(jù)列聯(lián)表中的數(shù)據(jù),可得

          所以,在犯錯誤概率不超過的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

          (Ⅱ)由表可知在8根中乙地“短纖維”的根數(shù)為,

          的可能取值為:0,1,2,3,

          ,

          ,

          的分布列為:

          0

          1

          2

          3

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x3+x2f'(1).
          (1)求f'(1)和函數(shù)x的極值;
          (2)若關(guān)于x的方程f(x)=a有3個不同實(shí)根,求實(shí)數(shù)a的取值范圍;
          (3)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】知函數(shù)f(x)=31+|x| ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是(
          A.
          B.
          C.(﹣ ,
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,曲線的極坐標(biāo)方程為

          (Ⅰ)求曲線的普通方程和參數(shù)方程;

          (Ⅱ)設(shè)與曲線交于 兩點(diǎn),求線段的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).

          (1)求點(diǎn)的軌跡方程;

          (2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個動點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種商品原來每件售價(jià)為25元,年銷售量8萬件.
          (Ⅰ)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收人不低于原收入,該商品每件定價(jià)最多為多少元?
          (Ⅱ)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到x元.公司擬投入 (x2﹣600)萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入 x萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=log3(1+x)﹣log3(1﹣x).
          (1)判斷函數(shù)f(x)的奇偶性,并加以證明;
          (2)已知函數(shù)g(x)=log ,當(dāng)x∈[ , ]時(shí),不等式 f(x)≥g(x)有解,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)).

          (Ⅰ)若方程有兩根,求的取值范圍;

          (Ⅱ)在(Ⅰ)的前提下,設(shè),求證: 隨著的減小而增大;

          (Ⅲ)若不等式恒成立,求證: ).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓, 在拋物線上,圓過原點(diǎn)且與的準(zhǔn)線相切.

          (Ⅰ) 求的方程;

          (Ⅱ) 點(diǎn),點(diǎn)(與不重合)在直線上運(yùn)動,過點(diǎn)的兩條切線,切點(diǎn)分別為, .求證: (其中為坐標(biāo)原點(diǎn)).

          查看答案和解析>>

          同步練習(xí)冊答案