【題目】如圖1,在直角梯形中,AB∥CD,
,且
.現(xiàn)以
為一邊向梯形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,如圖2.
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點(diǎn)D到平面BEC的距離.
【答案】(1)證明見解析;(2).
【解析】
試題(1)要證直線與平面
垂直,題中翻折成平面
與平面
垂直,因此有
平面
,從而有一個(gè)線線垂直
,另一個(gè)在梯形
中由平面幾何知識可證
,從而得證線面垂直;(2)由(1)知平面
與平面
垂直,因此只要過
作
于點(diǎn)
,則可得
的長就是點(diǎn)
到平面
的距離,在三角形中計(jì)算可得.
試題解析:(1)在正方形中,
,又因?yàn)槠矫?/span>
平面
,且平面
平面
,所以
平面
,所以
.在直角梯形
中,
,可得
,在
中,
,所以
,所以
,
所以平面
.
(2)因?yàn)?/span>平面
,所以平面
平面
,過點(diǎn)
作
的垂線交
于點(diǎn)
,則
平面
,所以點(diǎn)
到平面
的距離等于線段
的長度.
在直角三角形中,
,所以
,
所以點(diǎn)到平面
的距離等于
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)a1,a2,…,an的平均數(shù)為a,方差為s2,則數(shù)據(jù)2a1,2a2,…,2an的平均數(shù)和方差分別為( )
A. a,s2 B. 2a,s2
C. 2a,2s2 D. 2a,4s2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若
=1,Sn是{
}的前n項(xiàng)和,則
的最小值為________.
【答案】4
【解析】
成等比數(shù)列,
=1,可得:
=
,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入
利用分離常數(shù)法化簡后,利用基本不等式求出式子的最小值.
∵成等比數(shù)列,a1=1,
∴=
,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴=
=n+1+
﹣2≥2
﹣2=4,
當(dāng)且僅當(dāng)n+1=時(shí)取等號,此時(shí)n=2,且
取到最小值4,
故答案為:4.
【點(diǎn)睛】
本題考查了等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,等比中項(xiàng)的性質(zhì),基本不等式求最值,在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯(cuò)誤.
【題型】填空題
【結(jié)束】
17
【題目】設(shè)是公比為正數(shù)的等比數(shù)列,
,
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列
的前
項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù),0<α<π),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=
(p>0).
(Ⅰ)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),求 +
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓
與
軸負(fù)半軸交于點(diǎn)
,過點(diǎn)
的直線
,
分別與圓
交于
,
兩點(diǎn).
(1)若,
,求△
的面積;
(2)過點(diǎn)作圓O的兩條切線,切點(diǎn)分別為E,F(xiàn),求
;
(3)若,求證:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).
.求證:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在
上的一點(diǎn)
的正北方向的
處建設(shè)一倉庫,設(shè)
,并在公路北側(cè)建造邊長為
的正方形無頂中轉(zhuǎn)站
(其中
在
上),現(xiàn)從倉庫
向
和中轉(zhuǎn)站分別修兩條道路
,已知
,且
.
(1)求關(guān)于
的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬元,兩條道路造價(jià)為30萬元
,問:
取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)
最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校各有3名教師報(bào)名支教,期中甲校2男1女,乙校1男2女.
(1)若從甲校和乙校報(bào)名的教師中各任選1名,寫出所有可能的結(jié)果,并求選出的2名教師性別相同的概率;
(2)若從報(bào)名的6名教師中任選2名,寫出所有可能的結(jié)果,并求選出的2名教師來自同一學(xué)校的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com