日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓G:的兩個焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的一點(diǎn),且滿足
          (Ⅰ)求離心率e的取值范圍;
          (Ⅱ)當(dāng)離心率e取得最小值時,點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問A、B兩點(diǎn)能否關(guān)于過點(diǎn)的直線對稱?若能,求出k的取值范圍;若不能,請說明理由
          (1);(2)(i)所求橢圓方程為,(ⅱ)當(dāng)時,A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱。
          (I)設(shè)M(x0,y0
                          ①
           ②
          由②得代入①式整理得

          解得

          (Ⅱ)(i)當(dāng)
          設(shè)H(x,y)為橢圓上一點(diǎn),則

          若0
          (舍去)
          若b≥3,當(dāng)y=-3時,|HN|2有最大值2b2+18
          由2b2+18=50得b2=16
          ∴所求橢圓方程為
          (ii)設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則由
                      ③
          又直線PQ⊥直線l   ∴直線PQ方程為
          將點(diǎn)Q(x0,y0)代入上式得,   ④
          由③④得Q
          (解1)而Q點(diǎn)必在橢圓內(nèi)部  
          由此得

          故當(dāng)時A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱
          (解2)∴AB所在直線方程為


          顯然1+2k2≠0


          直線l與橢圓有兩不同的交點(diǎn)A、B ∴△>0
          解得

          故當(dāng)時,A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱。
          (ii)另解;設(shè)直線l的方程為y=kx+b


          設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則
               ③
          又直線PQ⊥直線l   ∴直線PQ方程為
          將點(diǎn)Q(x0,y0)代入上式得,   ④
          將③代入④
          ∵x1,x2是(*)的兩根

          ⑤代入⑥得
          ∴當(dāng)時,A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的左、右焦點(diǎn)分別為,.過的直線交橢圓于兩點(diǎn),過的直線交橢圓于兩點(diǎn),且,垂足為
          (Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,證明:;
          (Ⅱ)求四邊形的面積的最小值.
           
           
           
           
           
           
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的中心在坐標(biāo)原點(diǎn),一條準(zhǔn)線的方程為,過橢圓的左焦點(diǎn),且方向向量為的直線交橢圓于兩點(diǎn),的中點(diǎn)為
          (1)求直線的斜率(用表示);
          (2)設(shè)直線的夾角為,當(dāng)時,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且經(jīng)過點(diǎn)A ;
          (1)求滿足條件的橢圓方程;
          (2)求該橢圓的頂點(diǎn)坐標(biāo),長軸長,短軸長,離心率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知橢圓C,經(jīng)過橢圓C的右焦點(diǎn)F且斜率為kk≠0)的直線l交橢圓G于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).

          (1)是否存在k,使對任意m>0,總有成立?若存在,求出所有k的值;
          (2)若,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知向量,經(jīng)過定點(diǎn)且方向向量為的直線與經(jīng)過定點(diǎn)且方向向量為的直線交于點(diǎn)M,其中R,常數(shù)a>0.
          (1)求點(diǎn)M的軌跡方程;
          (2)若,過點(diǎn)的直線與點(diǎn)M的軌跡交于C、D兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          橢圓上一點(diǎn)到直線與到點(diǎn)(-2,0)的距離之比為          

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)P(x,y)是+=1上一點(diǎn),則x+y的最小值為__________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知橢圓的左、右焦點(diǎn)分別為,若橢圓上存在一點(diǎn)使,則該橢圓的離心率的取值范圍為          

          查看答案和解析>>

          同步練習(xí)冊答案