【題目】已知為坐標原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓的標準方程;
(2)是否存在直線:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
【答案】(1)(2)見解析
【解析】
(1)由題意列出關(guān)于a,b的關(guān)系式,解得a,b即可.
(2)將直線與橢圓聯(lián)立,將向量數(shù)量積的運算用坐標形式表示,利用根與系數(shù)之間的關(guān)系確定k的取值范圍.
(1)在中,令
,得
,解得
.
由垂徑長(即過焦點且垂直于實軸的直線與橢圓相交所得的弦長)為3,
得,
所以.①
因為直線:
與橢圓
相切,則
.②
將②代入①,得.
故橢圓的標準方程為
.
(2)設(shè)點,
.
由(1)知,則直線
的方程為
.
聯(lián)立得
,
則恒成立.
所以,
,
.
因為,
所以.即
.
即
,
得,得
,
即,
解得;
∴直線存在,且
的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,半徑為2的切直線MN于點P,射線PK從PN出發(fā)繞點P逆時針方向旋轉(zhuǎn)到PM,旋轉(zhuǎn)過程中,PK交
于點Q,設(shè)
為x,弓形PmQ的面積為
,那么
的圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知數(shù)列,首項
,設(shè)該數(shù)列的前
項的和為
,且
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足
,求數(shù)列
的通項公式;
(3)在第(2)小題的條件下,令,
是數(shù)列
的前
項和,若對
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學、生物、政治、歷史、地理6門學科(3門理科,3門文科)中選擇3門學科參加等級考試,小李同學受理想中的大學專業(yè)所限,決定至少選擇一門理科學科,那么小李同學的選科方案有________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將個不同的紅球和
個不同的白球,放入同一個袋中,現(xiàn)從中取出
個球.
(1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;
(2)取出一個紅球記分,取出一個白球記
分,若取出
個球的總分不少于
分,則有多少種不同的取法;
(3)若將取出的個球放入一箱子中,記“從箱子中任意取出
個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到
個紅球并且恰有一次取到
個白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非零復數(shù),
,
;若
,
,
滿足
,
.
(1)求的值;
(2)若所對應點
在圓
,求
所對應的點的軌跡;
(3)是否存在這樣的直線,
對應點在
上,
對應點也在直線
上?若存在,求出所有這些直線;若不存在,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升,
升,
升,1斗為10升,則下列判斷正確的是( )
A. ,
,
依次成公比為2的等比數(shù)列,且
B. ,
,
依次成公比為2的等比數(shù)列,且
C. ,
,
依次成公比為
的等比數(shù)列,且
D. ,
,
依次成公比為
的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調(diào)查,銷售單價x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面上有個點,將每一個點染上紅色或藍色.從這
個點中,任取
個點,記
個點顏色相同的所有不同取法總數(shù)為
.
(1)若,求
的最小值;
(2)若,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com