日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
          (2)當(dāng)時,函數(shù)在區(qū)間上存在極值,求的最大值.
          (參考數(shù)值:自然對數(shù)的底數(shù)).
          (1);(2).

          試題分析:(1)解法1是將函數(shù)在其定義域上為增函數(shù)等價轉(zhuǎn)化為不等式在區(qū)間上恒成立,利用參數(shù)分離法得到不等式上恒成立,并利用基本不等式求出的最小值,從而求出的取值范圍;解法2是求得導(dǎo)數(shù),將問題等價轉(zhuǎn)化為不等式上恒成立,結(jié)合二次函數(shù)零點分布的知識求出的取值范圍;(2)先將代入函數(shù)的解析式并求出的導(dǎo)數(shù),構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點存在定理找出函數(shù)的極值點所存在的區(qū)間,結(jié)合條件確定的最大值.
          試題解析:(1)解法1:函數(shù)的定義域為,
          ,.
          函數(shù)上單調(diào)遞增,
          ,即都成立.
          都成立.
          當(dāng)時,,當(dāng)且僅當(dāng),即時,取等號.
          ,即,的取值范圍為.
          解法2:函數(shù)的定義域為,
          ,.
          方程的判別式.
          ①當(dāng),即時,,
          此時,都成立,
          故函數(shù)在定義域上是增函數(shù).
          ②當(dāng),即時,要使函數(shù)在定義域上為增函數(shù),
          只需都成立.
          設(shè),則,得.
          .
          綜合①②得的取值范圍為;
          (2)當(dāng)時,.
          .
          函數(shù)上存在極值,
          ∴方程上有解,
          即方程上有解.
          ,由于,則
          函數(shù)上單調(diào)遞減.
          ,
          ,
          函數(shù)的零點.
          方程上有解,,.
          的最大值為.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知,函數(shù)
          (Ⅰ)當(dāng)時,
          (1)若,求函數(shù)的單調(diào)區(qū)間;
          (2)若關(guān)于的不等式在區(qū)間上有解,求的取值范圍;
          (Ⅱ)已知曲線在其圖象上的兩點,)處的切線分別為.若直線平行,試探究點與點的關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          己知a∈R,函數(shù)
          (1)若a=1,求曲線在點(2,f (2))處的切線方程;
          (2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知為函數(shù)圖象上一點,O為坐標(biāo)原點,記直線的斜率
          (1)若函數(shù)在區(qū)間上存在極值,求實數(shù)m的取值范圍;
          (2)設(shè),若對任意恒有,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導(dǎo)函數(shù).
          (1)當(dāng)a=2時,對任意的的最小值;
          (2)若存在使f(x0)>0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)(e為自然對數(shù)的底數(shù))
          (1)求的最小值;
          (2)若對于任意的,不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若f(x)=ax4+bx2+c滿足f′(1)=2,則f′(﹣1)=( 。
          A.﹣4B.﹣2C.2D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          8. 設(shè)函數(shù)fx)在R上可導(dǎo),其導(dǎo)函數(shù)為f ′x),且函數(shù)fx)在x=﹣2處取得極小值,則函數(shù)y=xf ′x)的圖象可能是( )

          A                    B                    C                  D

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)函數(shù),且,則( )
          A.0B.-1C.3D.-6

          查看答案和解析>>

          同步練習(xí)冊答案