日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  

          . 已知函數(shù)

          (Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

          (Ⅱ)若為奇函數(shù):

          (1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

          (2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

           

          【答案】

          解答:(Ⅰ)∵上存在最大值和最小值,∴(否則值域?yàn)镽),

              ∴

          ,又,由題意有,

                  ∴;     ………………… 4分

          (Ⅱ)若為奇函數(shù),∵,∴,

           ∴,,

          (1)若,使在(0,)上遞增,在(,)上遞減,則,

          ,這時(shí),當(dāng)時(shí),,遞增。

              當(dāng)時(shí),遞減。   …………………9分 

          (2)

          △=若△,即,則恒成立,

          這時(shí)上遞減,∴! 12分

          ,則當(dāng)時(shí),,

          不可能恒小于等于0。

          ,則不合題意。

          ,則,

          ,∴,使,

          時(shí),,這時(shí)遞增,,不合題意。

          綜上。      ………………… 15分

           

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時(shí)有極大值6,在x=1時(shí)有極小值,
          (1)求a,b,c的值;
          (2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2
          3
          a•sinx•cosx•cos2x-6cos22x+3
          ,且f(
          π
          24
          )=0

          (Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
          (Ⅱ)若f(θ)=-3,且θ∈(-
          24
          ,
          π
          24
          )
          ,求θ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=asinx+bcosx+c的圖象上有一個(gè)最低點(diǎn)(
          11π
          6
          ,-1)

          (Ⅰ)如果x=0時(shí),y=-
          3
          2
          ,求a,b,c.
          (Ⅱ)如果將圖象上每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的
          3
          π
          ,然后將所得圖象向左平移一個(gè)單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個(gè)公差為3的等差數(shù)列,求y=f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
          (Ⅰ)用xn表示xn+1
          (Ⅱ)若x1=4,記an=lg
          xn+2xn-2
          ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
          (Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
          A、f(x)=2sin(
          1
          2
          x+
          π
          6
          )
          B、f(x)=2sin(
          1
          2
          x-
          π
          6
          )
          C、f(x)=2sin(2x-
          π
          6
          )
          D、f(x)=2sin(2x+
          π
          6
          )

          查看答案和解析>>

          同步練習(xí)冊答案