日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 過F1且與x軸垂直的直線交橢圓于A、B兩點(diǎn),直線AF2與橢圓的另一個交點(diǎn)為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為( )
          A.
          B.
          C.
          D.

          【答案】A
          【解析】解:設(shè)橢圓的左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),
          由x=﹣c,代入橢圓方程可得y=±
          可設(shè)A(﹣c, ),C(x,y),
          由△ABF2的面積是△BCF2的面積的2倍,
          可得 =2
          即有(2c,﹣ )=2(x﹣c,y),
          即2c=2x﹣2c,﹣ =2y,
          可得x=2c,y=﹣
          代入橢圓方程可得, + =1,
          由e= ,b2=a2﹣c2 ,
          即有4e2+ e2=1,
          解得e=
          故選:A.
          設(shè)橢圓的左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),設(shè)x=﹣c,代入橢圓方程,求得A的坐標(biāo),設(shè)出C(x,y),由△ABF2的面積是△BCF2的面積的2倍,可得 =2 ,運(yùn)用向量的坐標(biāo)運(yùn)算可得x,y,代入橢圓方程,運(yùn)用離心率公式,解方程即可得到所求值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

          (1)求直線的普通方程和圓的直角坐標(biāo)方程;

          (2)若點(diǎn)是直線上的動點(diǎn),過作直線與圓相切,切點(diǎn)分別為、,若使四邊形的面積最小,求此時點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合 ,則A∩(RB)等于(
          A.(﹣∞,1)
          B.(0,4)
          C.(0,1)
          D.(1,4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為
          (1)求數(shù)列{an}的通項(xiàng)公式an;
          (2)是否存在正整數(shù)n,使得 ?若存在,求出n值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xiyi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

          A. yx具有正的線性相關(guān)關(guān)系

          B. 回歸直線過樣本點(diǎn)的中心(,

          C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

          D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

          1)求曲線的普通方程和直線的傾斜角;

          2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

          x

          2

          4

          5

          6

          8

          y

          30

          40

          60

          50

          70

          (1)若廣告費(fèi)與銷售額具有相關(guān)關(guān)系,求回歸直線方程;

          (2)在已有的五組數(shù)據(jù)中任意抽取兩組,求兩組數(shù)據(jù)其預(yù)測值與實(shí)際值之差的絕對值都不超過5的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知,動點(diǎn)滿足,設(shè)動點(diǎn)的軌跡為曲線

          1)求動點(diǎn)的軌跡方程,并說明曲線是什么圖形;

          2)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的方程;

          3)設(shè)是直線上的點(diǎn),過點(diǎn)作曲線的切線,切點(diǎn)為,設(shè),求證:過三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當(dāng)n∈N*時,
          (Ⅰ)0<xn+1<xn
          (Ⅱ)2xn+1﹣xn ;
          (Ⅲ) ≤xn

          查看答案和解析>>

          同步練習(xí)冊答案