【題目】在平面直角坐標(biāo)系中,已知橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)
在
軸上,過(guò)點(diǎn)
的直線交橢圓
交于
,
兩點(diǎn).
①若直線的斜率為
,且
,求點(diǎn)
的坐標(biāo);
②設(shè)直線,
,
的斜率分別為
,
,
,是否存在定點(diǎn)
,使得
恒成立?若存在,求出
點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)①
;②存在,
.
【解析】
(1)利用橢圓的離心率為、過(guò)點(diǎn)
以及
建立方程組,求出
和
的值即可;
(2)①設(shè)出直線的方程,聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理和
,得出
的值即可;②假設(shè)
成立,設(shè)
,分別討論直線
的斜率是否為
的情形,聯(lián)立直線與圓錐曲線的方程以及利用
,解出
的值,求出
點(diǎn)坐標(biāo)即可.
(1)橢圓
的離心率為
,且過(guò)點(diǎn)
.
,解之得:
,
橢圓
的方程為:
;
(2)設(shè),
,
①設(shè)直線的方程為:
,
由,得:
,
,故
,
,
,
,解得
.
;
②,設(shè)
,
(。┊(dāng)直線的斜率為
時(shí),
,
,
由,可得
,解得
,即
;
(ⅱ)當(dāng)直線的斜率不為
時(shí),設(shè)
,
,
設(shè)直線的方程為
,
由,得:
,
.
由,可得
,
,
,
,
,
當(dāng)
時(shí),上式恒成立.
綜上,存在定點(diǎn),使得
恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,所有棱長(zhǎng)均為1,則點(diǎn)B1到平面ABC1的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有關(guān)命題的說(shuō)法錯(cuò)誤的是( )
A.若p∨q為假命題,則p、q均為假命題
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件
C.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”
D.對(duì)于命題p:x≥0,2x=3,則¬P:x<0,2x≠3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面
平面
.四邊形
為正方形,四邊形
為梯形,且
,
,
,
.
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)線段上是否存在點(diǎn)
,使得直線
平面
若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的差為
,離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若在軸上存在點(diǎn)
,過(guò)點(diǎn)
的直線
分別與橢圓
相交于
、
兩點(diǎn),且
為定值,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:①?gòu)?/span>20罐奶粉中抽取4罐進(jìn)行食品安全衛(wèi)生檢查;②從某社區(qū)100戶(hù)高收入家庭,270戶(hù)中等收入家庭,80戶(hù)低收入家庭中選出45戶(hù)進(jìn)行消費(fèi)水平調(diào)查;③某中學(xué)報(bào)告廳有28排,每排有35個(gè)座位,一次報(bào)告會(huì)恰好坐滿(mǎn)了聽(tīng)眾,報(bào)告會(huì)結(jié)束后,為了聽(tīng)取意見(jiàn),需要請(qǐng)28名聽(tīng)眾進(jìn)行座談.較為合理的抽樣方法是( )
A.①系統(tǒng)抽樣;②簡(jiǎn)單隨機(jī)抽樣;③分層抽樣
B.①簡(jiǎn)單隨機(jī)抽樣;②分層抽樣;③系統(tǒng)抽樣
C.①分層抽樣;②系統(tǒng)抽樣;③簡(jiǎn)單隨機(jī)抽樣
D.①簡(jiǎn)單隨機(jī)抽樣;②系統(tǒng)抽樣;③分層抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=4y.
(1)求拋物線在點(diǎn)P(2,1)處的切線方程;
(2)若不過(guò)原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OA⊥OB,|OA|=|OB|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)在圓柱
的底面圓
上,
為圓
的直徑.
(1)若圓柱的體積
為
,
,
,求異面直線
與
所成的角(用反三角函數(shù)值表示結(jié)果);
(2)若圓柱的軸截面是邊長(zhǎng)為2的正方形,四面體
的外接球?yàn)榍?/span>
,求
兩點(diǎn)在球
上的球面距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年的政府工作報(bào)告強(qiáng)調(diào),要樹(shù)立綠水青山就是金山銀山理念,以前所未有的決心和力度加強(qiáng)生態(tài)環(huán)境保護(hù).某地科技園積極檢查督導(dǎo)園區(qū)內(nèi)企業(yè)的環(huán)保落實(shí)情況,并計(jì)劃采取激勵(lì)措施引導(dǎo)企業(yè)主動(dòng)落實(shí)環(huán)保措施,下圖給出的是甲、乙兩企業(yè)2012年至2017年在環(huán)保方面投入金額(單位:萬(wàn)元)的柱狀圖.
(Ⅰ)分別求出甲、乙兩企業(yè)這六年在環(huán)保方面投入金額的平均數(shù);(結(jié)果保留整數(shù))
(Ⅱ)園區(qū)管委會(huì)為盡快落實(shí)環(huán)保措施,計(jì)劃對(duì)企業(yè)進(jìn)行一定的獎(jiǎng)勵(lì),提出了如下方案:若企業(yè)一年的環(huán)保投入金額不超過(guò)200萬(wàn)元,則該年不獎(jiǎng)勵(lì);若企業(yè)一年的環(huán)保投入金額超過(guò)200萬(wàn)元,不超過(guò)300萬(wàn)元,則該年獎(jiǎng)勵(lì)20萬(wàn)元;若企業(yè)一年的環(huán)保投入金額超過(guò)300萬(wàn)元,則該年獎(jiǎng)勵(lì)50萬(wàn)元.
(ⅰ)分別求出甲、乙兩企業(yè)這六年獲得的獎(jiǎng)勵(lì)之和;
(ⅱ)現(xiàn)從甲企業(yè)這六年中任取兩年對(duì)其環(huán)保情況作進(jìn)一步調(diào)查,求這兩年獲得的獎(jiǎng)勵(lì)之和不低于70萬(wàn)元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com