日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)橢圓C:=1(a>b> 0)與x軸交于兩點A、B,點P是橢圓C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,求證:·為定值b2-a2.

          (2)由(1)類比可得如下命題:雙曲線C:=1(a>0,b>0)與x軸交于兩點A、B,點P是雙曲線C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,則·為定值.請寫出這個定值(不要求給出解題過程).

          (1)證明:設(shè)點P(x0,y0),x0≠±a.依題意,得A(-a,0),B(a,0).

          ∴直線PA的方程為y=(x+a).

          令x=0,得ym=.

          同理得yn=.

          ∴ymyn=.∵點P(x0,y0)是橢圓C上一點,∴+=1.

          ∴y02=(a2-x02).∴ymyn==b2.

          =(a,yn),=(-a,ym),∴·=-a2+ymyn=b2-a2.

          (2)-(a2+b2).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率為
          6
          3
          ,且傾斜角為60°的直線l過點(0,-2
          3
          )
          和橢圓C的右焦點F.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若已知D(3,0),點M,N是橢圓C上不重合的兩點,且
          DM
          DN
          ,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•樂山二模)如圖,已知直線L:x=my+1過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點F,且交橢圓C于A、B兩點,點A、F、B在直線G;x=a2上的射影依次為點D、K、E,若拋物線x2=4
          3
          y的焦點為橢圓C的頂點.
          (1)求橢圓C的方程;
          (2)若直線L交y軸于點M,
          MA
          1
          AF
          ,
          MB
          2
          BF
          ,當(dāng)M變化時,求λ12的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•泉州模擬)如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓C與橢圓Γ:
          x2
          8
          +
          y2
          4
          =1
          相似,且橢圓C的一個短軸端點是拋物線y=
          1
          4
          x2
          的焦點.
          (Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)橢圓E的中心在原點,對稱軸在坐標(biāo)軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點,且與橢圓E交于H,K兩點.若線段AB與線段HK的中點重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•通州區(qū)一模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為e=
          1
          2
          ,右焦點為F(1,0).
          (I)求橢圓C的方程;
          (II)求經(jīng)過點A(4,0)且與橢圓C相切的直線方程;
          (III)設(shè)P為橢圓C上一動點,以PF為直徑的動圓內(nèi)切于一個定圓E.求定圓E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,

             (1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;

             (2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;

             (3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設(shè),,問是否為定值?說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案