日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
          (1)求橢圓的方程;
          (2)設(shè),過點作與軸不重合的直線交橢圓于、兩點,連結(jié)分別交直線、兩點.試問直線的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.

          (1);(2)詳見解析.

          解析試題分析:(1)由直線和圓相切,求,再由離心率,得,從而求,進而求橢圓的方程;(2)要說明直線的斜率之積是否為定值,關(guān)鍵是確定兩點的坐標.首先設(shè)直線的方程,并與橢圓聯(lián)立,設(shè),利用三點共線確定兩點的坐標的坐標,再計算直線的斜率之積,這時會涉及到,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.
          試題解析:(1),故     4分
          (2)設(shè),若直線與縱軸垂直,  

          中有一點與重合,與題意不符,
          故可設(shè)直線.           5分
          將其與橢圓方程聯(lián)立,消去得:
                    6分
               7分
          三點共線可知,,,        8分
          同理可得                                             9分
                            10分
                 11分
          所以
          故直線、的斜率為定值.                                  13分
          考點:1、橢圓的標準方程和簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知點是拋物線上不同的兩點,點在拋物線的準線上,且焦點
          到直線的距離為.
          (I)求拋物線的方程;
          (2)現(xiàn)給出以下三個論斷:①直線過焦點;②直線過原點;③直線平行軸.
          請你以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C的兩個焦點分別為,且點在橢圓C上,又.
          (1)求焦點F2的軌跡的方程;
          (2)若直線與曲線交于M、N兩點,以MN為直徑的圓經(jīng)過原點,求實數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知拋物線的焦點分別為,交于兩點(為坐標原點),且.
          (1)求拋物線的方程;
          (2)過點的直線交的下半部分于點,交的左半部分于點,點坐標為,求△面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
          (1)求雙曲線方程;
          (2)設(shè)Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓的右焦點,長軸的左、右端點分別為,且.
          (1)求橢圓的方程;
          (2)過焦點斜率為)的直線交橢圓兩點,弦的垂直平分線與軸相交于點. 試問橢圓上是否存在點使得四邊形為菱形?若存在,求的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知拋物線的準線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
          (1)求拋物線E的方程;
          (2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知定點與分別在軸、軸上的動點滿足:,動點滿足
          (1)求動點的軌跡的方程;
          (2)設(shè)過點任作一直線與點的軌跡交于兩點,直線與直線分別交于點為坐標原點);
          (i)試判斷直線與以為直徑的圓的位置關(guān)系;
          (ii)探究是否為定值?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,橢圓經(jīng)過點,其左、右頂點分別是、,左、右焦點分別是,(異于、)是橢圓上的動點,連接交直線、兩點,若成等比數(shù)列.

          (1)求此橢圓的離心率;
          (2)求證:以線段為直徑的圓過點.

          查看答案和解析>>

          同步練習冊答案