日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線相切.
          (1)求橢圓的方程;
          (2)設(shè),過點(diǎn)作與軸不重合的直線交橢圓于、兩點(diǎn),連結(jié)分別交直線、兩點(diǎn).試問直線的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.

          (1);(2)詳見解析.

          解析試題分析:(1)由直線和圓相切,求,再由離心率,得,從而求,進(jìn)而求橢圓的方程;(2)要說明直線的斜率之積是否為定值,關(guān)鍵是確定、兩點(diǎn)的坐標(biāo).首先設(shè)直線的方程,并與橢圓聯(lián)立,設(shè),利用三點(diǎn)共線確定、兩點(diǎn)的坐標(biāo)的坐標(biāo),再計(jì)算直線的斜率之積,這時(shí)會(huì)涉及到,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.
          試題解析:(1),故     4分
          (2)設(shè),若直線與縱軸垂直,  

          中有一點(diǎn)與重合,與題意不符,
          故可設(shè)直線.           5分
          將其與橢圓方程聯(lián)立,消去得:
                    6分
               7分
          三點(diǎn)共線可知,,,        8分
          同理可得                                             9分
                            10分
                 11分
          所以
          故直線、的斜率為定值.                                  13分
          考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)是拋物線上不同的兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,且焦點(diǎn)
          到直線的距離為.
          (I)求拋物線的方程;
          (2)現(xiàn)給出以下三個(gè)論斷:①直線過焦點(diǎn);②直線過原點(diǎn);③直線平行軸.
          請你以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C的兩個(gè)焦點(diǎn)分別為,且點(diǎn)在橢圓C上,又.
          (1)求焦點(diǎn)F2的軌跡的方程;
          (2)若直線與曲線交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的焦點(diǎn)分別為,交于兩點(diǎn)(為坐標(biāo)原點(diǎn)),且.
          (1)求拋物線的方程;
          (2)過點(diǎn)的直線交的下半部分于點(diǎn),交的左半部分于點(diǎn),點(diǎn)坐標(biāo)為,求△面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
          (1)求雙曲線方程;
          (2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的右焦點(diǎn),長軸的左、右端點(diǎn)分別為,且.
          (1)求橢圓的方程;
          (2)過焦點(diǎn)斜率為)的直線交橢圓兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn). 試問橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的準(zhǔn)線與x軸交于點(diǎn)M,過點(diǎn)M作圓的兩條切線,切點(diǎn)為A、B,.
          (1)求拋物線E的方程;
          (2)過拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿足:,動(dòng)點(diǎn)滿足
          (1)求動(dòng)點(diǎn)的軌跡的方程;
          (2)設(shè)過點(diǎn)任作一直線與點(diǎn)的軌跡交于兩點(diǎn),直線與直線分別交于點(diǎn)為坐標(biāo)原點(diǎn));
          (i)試判斷直線與以為直徑的圓的位置關(guān)系;
          (ii)探究是否為定值?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線、兩點(diǎn),若成等比數(shù)列.

          (1)求此橢圓的離心率;
          (2)求證:以線段為直徑的圓過點(diǎn).

          查看答案和解析>>

          同步練習(xí)冊答案