日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)若處取得極值,求實(shí)數(shù)的值.

          (2)求函數(shù)的單調(diào)區(qū)間.

          (3)若上沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

          【答案】(1)(2)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為(3)

          【解析】試題分析:(1)求導(dǎo),令,再討論單調(diào)性下結(jié)論即可;

          (2)由,令可得增區(qū)間,令可得減區(qū)間;

          (3)要使上沒(méi)有零點(diǎn),只需在,又,只需在區(qū)間上, ,分 三種情況討論即可.

          試題解析:

          (1)的定義域?yàn)?/span>,且.

          處取得極值,

          ,解得(舍),

          當(dāng)時(shí), , ;

          ,

          ∴函數(shù)處取得極小值,

          .

          (2).

          ,解得;

          ,解得,

          ∴函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

          (3)要使上沒(méi)有零點(diǎn),只需在,

          ,只需在區(qū)間上, .

          ①當(dāng)時(shí), 在區(qū)間上單調(diào)遞減,則

          解得矛盾.

          ②當(dāng)時(shí), 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          ,

          解得

          ③當(dāng)時(shí), 在區(qū)間上單調(diào)遞增,

          ,滿足題意,

          綜上所述,實(shí)數(shù)的取值范圍是: .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《中國(guó)好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下?tīng)N星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂(lè)評(píng)論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對(duì)歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國(guó)好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

          導(dǎo)師轉(zhuǎn)身人數(shù)(人)

          4

          3

          2

          1

          獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

          1

          2

          2

          1

          現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

          1)請(qǐng)列出所有的基本事件;

          2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,底面為菱形, , , 平面.

          (1)設(shè)交于點(diǎn),求證: 平面;

          (2)求多面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角梯形中, , .直角梯形通過(guò)直角梯形以直線為軸旋轉(zhuǎn)得到,且使平面平面. 為線段的中點(diǎn), 為線段上的動(dòng)點(diǎn).

          (1)求證:

          (2)當(dāng)點(diǎn)是線段中點(diǎn)時(shí),求二面角的余弦值;

          (3)是否存在點(diǎn),使得直線平面?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(2016·北京卷)如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,PAPD,PAPD,ABAD,AB1AD2,ACCD.

          (1)求證:PD⊥平面PAB

          (2)求直線PB與平面PCD所成角的正弦值;

          (3)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知以點(diǎn)P為圓心的圓經(jīng)過(guò)點(diǎn)A(-1,0)和B3,4),線段AB的垂直平分線交圓P于點(diǎn)CD,且|CD|.

          1)求直線CD的方程;

          2)求圓P的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)若函數(shù)處的切線方程為,求, 的值;

          (Ⅱ)若, 求函數(shù)的零點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓.

          1)求圓心C的坐標(biāo)及半徑r的大;

          2)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

          3)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為MO為坐標(biāo)原點(diǎn),且,求點(diǎn)P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

          某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

          性別

          選考方案確定情況

          物理

          化學(xué)

          生物

          歷史

          地理

          政治

          男生

          選考方案確定的有8人

          8

          8

          4

          2

          1

          1

          選考方案待確定的有6人

          4

          3

          0

          1

          0

          0

          女生

          選考方案確定的有10人

          8

          9

          6

          3

          3

          1

          選考方案待確定的有6人

          5

          4

          1

          0

          0

          1

          (Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

          (Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

          (Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案