日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)y=f(x)在x=數(shù)學公式處取得最小值-數(shù)學公式(t≠0)且f(1)=0.
          (1)求y=f(x)的表達式;
          (2)若函數(shù)y=f(x)在區(qū)間[-1,數(shù)學公式]上的最小值為-5,求此時t的值.

          解:(1)設f(x)=a(x-2-(a>0).
          因為f(1)=0,所以(a-1)=0.
          又t≠0,所以a=1,
          所以f(x)=(x-2-(t≠0).
          (2)因為f(x)=(x-2-(t≠0),
          ①當<-1,即t<-4時,
          f(x)min=f(-1)=(-1-2-=-5,解得t=-
          ②當-1≤,即-4≤t≤-1時,
          f(x)min=f()=-=-5,解得t=±2(舍去);
          ③當,即t>-1時,
          f(x)min=f()=(-2-=-5,解得t=-(舍去).
          綜上得,所求的t=-
          分析:(1)(1)根據(jù)條件可設二次函數(shù)的頂點式f(x)=a(x-)2-,由f(1)=0,可得a,從而求得f(x)表達式.
          (2)根據(jù)對稱軸與區(qū)間的位置關系分三種情況進行討論,求出其最小值,令其等于-5,即可求得t值.
          點評:本題考查二次函數(shù)在閉區(qū)間上最值問題及二次函數(shù)解析式的求解,考查分類討論思想、數(shù)形結合思想,屬中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)(x∈R)的圖象過點(0,-3),且f(x)>0的解集(1,3).
          (1)求f(x)的解析式;
          (2)求函數(shù)y=f(sinx),x∈[0,
          π2
          ]
          的最值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)圖象的頂點是(-1,3),又f(0)=4,一次函數(shù)y=g(x)的圖象過(-2,0)和(0,2).
          (1)求函數(shù)y=f(x)和函數(shù)y=g(x)的解析式;
          (2)求關于x的不等式f(x)>3g(x)的解集.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)的圖象關于直線x=2對稱,且在x軸上截得的線段長為2.若f(x)的最小值為-1,求:
          (1)函數(shù)f(x)的解析式;
          (2)函數(shù)f(x)在[t,t+1]上的最小值g(t).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)的圖象如圖所示:
          (1)求函數(shù)y=f(x)的解析式;
          (2)根據(jù)圖象寫出不等式f(x)>0的解集;
          (3)若方程|f(x)|=k有兩個不相等的實數(shù)根,根據(jù)函數(shù)圖象及變換知識,求k的取值的集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)y=f(x)=x2+bx+c的圖象過點(1,13),且函數(shù)y=f(x-
          12
          )
          是偶函數(shù).
          (1)求f(x)的解析式;
          (2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函數(shù)g(x)在[t,2]上的最大值和最小值;
          (3)函數(shù)y=f(x)的圖象上是否存在這樣的點,其橫坐標是正整數(shù),縱坐標是一個完全平方數(shù)?如果存在,求出這樣的點的坐標;如果不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案