日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果△ABC外接圓半徑為R,且2R(sin2A-sin2C)=(
          2
          a-b)sinB
          ,
          (1)求角C的值
          (2)求△ABC面積的最大值.
          分析:(1)先根據(jù)正弦定理把2R(sin2A-sin2C)=(
          2
          a-b)sinB中的角轉(zhuǎn)換成邊可得a,b和c的關(guān)系式,再代入余弦定理求得cosC的值,進(jìn)而可得C.
          (2)根據(jù)三角形的面積公式求得三角形面積的表達(dá)式,利用兩角和公式化簡(jiǎn)整理后,根據(jù)角A的范圍求得面積的最大值
          解答:解:(1)由2R(sin2A-sin2C)=(
          2
          a-b)sinB,
          根據(jù)正弦定理得a2-c2=(
          2
          a-b)b=
          2
          ab-b2,
          ∴cosC=
          a2+b2-c2
          2ab
          =
          2
          2

          ∴角C的大小為45°,
          (2)∵S=
          1
          2
          absinC=
          1
          2
          ×
          2
          2
          ab
          =
          2
          R2sinAsinB=
          2
          R2sinAsin(135°-A)
          =
          2
          R2sinA(sin135°cosA-cos135°sinA)
          =R2(sinAcosA+sin2A)
          =R2
          1+sin2A-cos2A
          2

          =R2
          1+
          2
          sin(2A-
          π
          4
          )
          2

          ∴當(dāng)2A=135°,即A=67.5°時(shí),Smax=
          2
          +1
          2
          R2
          點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用.解三角形問(wèn)題過(guò)程中常需要利用正弦定理和余弦定理完成邊角問(wèn)題的互化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選考題
          請(qǐng)從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請(qǐng)?jiān)诖痤}卷上注明題號(hào).
          22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
          (1)解不等式f(x)≤5x+1;
          (2)若g(x)=
          1
          f(x)+m
          定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
          22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
          (1)求證:BE=2AD;
          (2)當(dāng)AC=1,BC=2時(shí),求AD的長(zhǎng).
          22-3已知P為半圓C:
          x=cosθ
          y=sinθ
          (θ為參數(shù),0≤θ≤π)
          上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長(zhǎng)度均為
          π
          3

          (1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
          (2)求直線AM的參數(shù)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省蘭州一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          選考題
          請(qǐng)從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請(qǐng)?jiān)诖痤}卷上注明題號(hào).
          22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
          (1)解不等式f(x)≤5x+1;
          (2)若定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
          22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
          (1)求證:BE=2AD;
          (2)當(dāng)AC=1,BC=2時(shí),求AD的長(zhǎng).
          22-3已知P為半圓上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長(zhǎng)度均為
          (1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
          (2)求直線AM的參數(shù)方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案