日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓的左、右焦點分別為F1,F(xiàn)2,P為橢圓M上任一點,且|PF1|•|PF2|的最大值的取值范圍是[2c2,3c2],其中,則橢圓m的離心率e的取值范圍是   
          【答案】分析:根據(jù)題意,|PF1|•|PF2|的最大值為a2,則由題意知2c2≤a2≤3c2,由此能夠?qū)С鰴E圓m的離心率e的取值范圍.
          解答:解:∵|PF1|•|PF2|的最大值=a2,
          ∴由題意知2c2≤a2≤3c2,

          .故橢圓m的離心率e的取值范圍
          答案:
          點評:|PF1|•|PF2|的最大值=a2是正確解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          3
          3
          ,以原點為圓心,橢圓短半軸長為半徑的圓與y=x+2相切.
          (1)求a與b;
          (2)設(shè)該橢圓的左、右焦點分別為F1和F2,直線l過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1與點P.求PF1線段垂直平分線與l2的交點M的軌跡方程,并說明曲線類型.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出以下5個命題:
          ①曲線x2-(y-1)2=1按
          a
          =(1,-2)
          平移可得曲線(x+1)2-(y-3)2=1;
          ②設(shè)A、B為兩個定點,n為常數(shù),|
          PA
          |-|
          PB
          |=n
          ,則動點P的軌跡為雙曲線;
          ③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
          ④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
          AB
          AP
          夾角為銳角θ,且滿足 |
          PB
          | |
          AB
          | +
          PA
          AB
          =0
          ,則點P的軌跡是圓(除去與直線AB的交點);
          ⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
          其中所有真命題的序號為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為
          1
          2
          且經(jīng)過點P(1,
          3
          2
          )
          .M為橢圓上的動點,以M為圓心,MF2為半徑作圓M.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若圓M與y軸有兩個交點,求點M橫坐標(biāo)的取值范圍;
          (3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•重慶一模)給出以下4個命題:
          ①曲線x2-(y-1)2=1按
          a
          =(1,-2)平移可得曲線(x+1)2-(y-3)2=1;
          ②若|x-1|+|y-1|≤1,則使x-y取得最小值的最優(yōu)解有無數(shù)多個;
          ③設(shè)A、B為兩個定點,n為常數(shù),|
          PA
          |-|
          PB
          |=n,則動點P的軌跡為雙曲線;
          ④若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓.
          其中所有真命題的序號為
          ②④
          ②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題12分)已知橢圓的左、右焦點分別為F1、F2,其中F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且  

          (I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。

           

          查看答案和解析>>

          同步練習(xí)冊答案