日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直角梯形中,,,,,點是線段的中點,將,分別沿,

          向上折起,使,重合于點,得到三棱錐.試在三棱錐中,

          1)證明:平面平面

          2)求直線與平面所成角的正弦值.

          【答案】1)證明見解析;(2.

          【解析】

          1)根據(jù)勾股定理的逆定理,得出,而,根據(jù)線面垂直的判定定理證出平面,最后利用面面垂直的判定定理,即可證明平面平面;

          2)以為坐標(biāo)原點,軸,軸,軸,建立空間直角坐標(biāo)系,根據(jù)空間坐標(biāo)的運(yùn)算可得出和平面的法向量,利用空間向量法求夾角的公式,即可求出直線與平面所成角的正弦值.

          解:(1)由題知:在直角梯形中,

          ,

          所以在三棱錐中,,

          所以

          又因為,,

          所以平面, 又因為平面

          所以,平面平面.

          2)由(1)知:,又

          為坐標(biāo)原點,以的方向分別作為軸,軸,軸的正方向,

          建立如圖空間直角坐標(biāo)系

          所以,,,

          設(shè)為平面的法向量,

          ,,

          ,可得

          得:,

          設(shè)直線與平面所成角為,所以,

          所以直線與平面所成角的正弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          1)討論的單調(diào)性;

          2)若有兩個極值點,,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項.

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)對當(dāng)?shù)氐哪撤N土特產(chǎn)的銷售量y(噸)和銷售單價x(元/千克)之間的關(guān)系進(jìn)行了調(diào)查,得到下表中的數(shù)據(jù):

          銷售單價x(元/千克)

          11

          10.5

          10

          9.5

          9

          8

          銷售量y(噸)

          5

          6

          8

          10

          11

          14.1

          1)根據(jù)前5組數(shù)據(jù),求出y關(guān)于x的回歸直線方程.

          2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5,則認(rèn)為回歸直線方程是理想的,試問(1)中得到的回歸直線方程是否理想?

          3)如果銷售量y(噸)和銷售單價x(元/千克)之間仍然服從(1)中的關(guān)系,進(jìn)貨成本為2.5/千克,且貨源充足(未售完的部分可按成本價全部售出),為了使利潤最大,請你就如何確定銷售單價給出合理建議.(每千克銷售單價不超過12元)

          參考公式:回歸直線方程,其中

          參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求曲線在點處的切線方程;

          (2)若在區(qū)間上恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線過坐標(biāo)原點O且與圓相交于點A,B,圓M過點A,B且與直線相切.

          1)求圓心M的軌跡C的方程;

          2)若圓心在x軸正半軸上面積等于的圓W與曲線C有且僅有1個公共點.

          (。┣蟪鰣AW標(biāo)準(zhǔn)方程;

          (ⅱ)已知斜率等于的直線,交曲線CE,F兩點,交圓WP,Q兩點,求的最小值及此時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若,求函數(shù)的單調(diào)遞減區(qū)間;

          2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

          3)若,正實數(shù),滿足,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù),是自然對數(shù)的底數(shù),)存在唯一的零點,則實數(shù)的取值范圍為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如下圖所示.以該木塔底層的邊作正方形,以點或點為圓心,以這個正方形的對角線為半徑作圓,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以該木塔底層的邊作正方形,會發(fā)現(xiàn)該正方形與其內(nèi)切圓的一個切點正好位于塔身和塔頂?shù)姆纸缇上.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于47.5米,塔頂到點的距離不超過19.9米,則該木塔的高度可能是(參考數(shù)據(jù):)(

          A.66.1B.67.3C.68.5D.69.0

          查看答案和解析>>

          同步練習(xí)冊答案