日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:(a>b>0),過(guò)點(diǎn)(0,1),且離心率為
          (1)求橢圓C的方程;
          (2)A,B為橢圓C的左右頂點(diǎn),直線lx=2x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),恒為定值.
          (1),(2)1.

          試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,基本方法為待定系數(shù)法.只需兩個(gè)獨(dú)立條件確定即可. 由b=1,可解得a=2,故橢圓的方程為,(2)證明橢圓定值問(wèn)題,實(shí)際是以算代征.即需計(jì)算出為一個(gè)常數(shù).由于點(diǎn)D在x軸上,所以,即只需計(jì)算E,F(xiàn)兩點(diǎn)縱坐標(biāo). 由直線AP: 與直線l:x=2的交點(diǎn)得: ,即,同理可得,因此==1。
          試題解析:(1)由題意可知,b=1,
          又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044201781672.png" style="vertical-align:middle;" />,且a2=b2+c2,解得a=2
          所以橢圓的方程為                  4
          (2)由題意可得:A(﹣2,0),B(2,0).
          設(shè)P(x0,y0),由題意可得:﹣2<x0<2,
          所以直線AP的方程為             6
          ,則,即        8
          同理:直線BP的方程為,令,則
                   10
          所以
          =                    ..12
          ,即4y02=4﹣x02,代入上式,
          所以|DE|·|DF|=1,所以|DE|·|DF|為定值1.                14
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率.
          (1)求橢圓的方程;
          (2)設(shè)直線)與橢圓交于、兩點(diǎn),線段 的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,已知,是橢圓上不同的三點(diǎn),,在第三象限,線段的中點(diǎn)在直線上.

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)求點(diǎn)C的坐標(biāo);
          (3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),)且直線PB,PC分別交直線OA兩點(diǎn),證明為定值并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          橢圓的離心率為,且經(jīng)過(guò)點(diǎn)過(guò)坐標(biāo)原點(diǎn)的直線均不在坐標(biāo)軸上,與橢圓M交于A、C兩點(diǎn),直線與橢圓M交于B、D兩點(diǎn)
          (1)求橢圓M的方程;
          (2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的左右頂點(diǎn)分別為,離心率
          (1)求橢圓的方程;
          (2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn)為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)雙曲線=1(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于(  )
          A.B.2 C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知中心在原點(diǎn)的橢圓C: 的一個(gè)焦點(diǎn)為為橢圓C上一點(diǎn),△MOF2的面積為.
          (1)求橢圓C的方程;
          (2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點(diǎn),且以線段AB為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          是任意實(shí)數(shù),則方程所表示的曲線一定不是(    )
          A.直線B.雙曲線C.拋物線D.圓

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知點(diǎn),直線上有兩個(gè)動(dòng)點(diǎn),始終使,三角形的外心軌跡為曲線為曲線在一象限內(nèi)的動(dòng)點(diǎn),設(shè),,則(    )
          A.B.
          C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案