日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱中, ,平面平面.

          (1)求證: ;

          (2)若,求.

          【答案】(1)見解析;(2)

          【解析】試題分析:(1)第(1)問,通過證明C1C⊥平面A1BC得到CC1A1B. (2)第(2)問,以C為坐標原點,分別以的方向為x軸,y軸的正方向建立空間直角坐標系,利用空間向量求二面角A1-BC1-A的余弦值 .

          試題解析:

          (1)因為平面AA1C1C⊥平面ABC,交線為AC,又BCAC

          所以BC⊥平面AA1C1C,

          因為C1C平面AA1C1C

          從而有BCC1C

          因為∠A1CC1=90°,所以A1CC1C,

          又因為BCA1CC,

          所以C1C⊥平面A1BC,

          A1B平面A1BC,所以CC1A1B

          (2)如圖,以C為坐標原點,分別以的方向為x軸,y軸的正方向建立空間直角坐標系C-xyz

          由∠A1CC1=90°,ACAA1A1CAA1

          不妨設BCACAA1=2,

          B(2,0,0),C1(0,-1,1),A(0,2,0),A1(0,1,1),

          所以=(0,-2,0), =(-2,-1,1), =(2,-2,0),

          設平面A1BC1的一個法向量為

          ·=0, ·=0,可取=(1,0,2).

          設平面ABC1的一個法向量為,

          ·=0, ·=0,可取=(1,1,3).

          cos, ,

          又因為二面角A1-BC1-A為銳二面角,

          所以二面角A1-BC1-A的余弦值為

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算術》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )

          A. B. C. D.

          【答案】B

          【解析】幾何體如圖,球心為O,半徑為,表面積為,選B.

          點睛:涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.

          型】單選題
          束】
          9

          【題目】是雙曲線的左右焦點,過且斜率為1的直線與兩條漸近線分別交于兩點,若,則雙曲線的離心率為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 ,其中.函數(shù)的圖象過點,點與其相鄰的最高點的距離為4

          (Ⅰ)求函數(shù)的單調遞減區(qū)間;

          (Ⅱ)計算的值;

          (Ⅲ)設函數(shù),試討論函數(shù)在區(qū)間 [0,3] 上的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】濟南市某中學高三年級有1000名學生參加學情調研測試,用簡單隨機抽樣的方法抽取了一個容量為50的樣本,得到數(shù)學成績的頻率分布直方圖如圖所示.

          1)求第四個小矩形的高,并估計本校在這次統(tǒng)測中數(shù)學成績不低于120分的人數(shù)和這1000名學生的數(shù)學平均分;

          2)已知樣本中,成績在[140,150]內的有2名女生,現(xiàn)從成績在這個分數(shù)段的學生中隨機選取2人做學習交流,求選取的兩人中至少有一名女生的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】有下列命題:①若,則;②若,則存在唯一實數(shù),使得;③若,則;④若,且的夾角為鈍角,則;⑤若平面內定點滿足,則為正三角形.其中正確的命題序號為 ________.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱ABCA1B1C1中,已知ACBCBCCC1,設AB1的中點為D,B1CBC1E.

          求證:(1)DE∥平面AA1C1C

          (2)BC1AB1.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 的左、右焦點分別為, ,且離心率為 為橢圓上任意一點,當時, 的面積為1.

          (1)求橢圓的方程;

          (2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設直線的斜率為,直線的斜率為,求證: 為定值.

          【答案】(1);(2)

          【解析】試題分析:(1)設由題,由此求出,可得橢圓的方程;

          (2)設,

          當直線的斜率不存在時,可得

          當直線的斜率不存在時,同理可得.

          當直線的斜率存在時,

          設直線的方程為,則由消去通過運算可得

          ,同理可得,由此得到直線的斜率為,

          直線的斜率為,進而可得.

          試題解析:(1)設由題,

          解得,則,

          橢圓的方程為.

          (2)設,

          當直線的斜率不存在時,設,則,

          直線的方程為代入,可得

          , ,則

          直線的斜率為,直線的斜率為

          ,

          當直線的斜率不存在時,同理可得.

          當直線、的斜率存在時,,

          設直線的方程為,則由消去可得:

          ,則,代入上述方程可得

          ,

          ,則

          ,

          設直線的方程為,同理可得,

          直線的斜率為

          直線的斜率為,

          .

          所以,直線的斜率之積為定值,即.

          型】解答
          束】
          21

          【題目】已知函數(shù), ,在處的切線方程為.

          (1)求,

          (2)若方程有兩個實數(shù)根, ,且,證明: .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】假設有一套住房的房價從2002年的20萬元上漲到2012年的40萬元,下表給出了兩種價格增長方式,其中是按直線上升的房價,是按指數(shù)增長的房價,t2002年以來經過的年數(shù).

          t

          0

          5

          10

          15

          20

          /萬元

          20

          30

          40

          50

          60

          /萬元

          20

          40

          80

          (1)求函數(shù)的解析式;

          (2)求函數(shù)的解析式;

          (3)完成上表空格中的數(shù)據(jù),并在同一直角坐標系中畫出兩個函數(shù)的圖象,然后比較兩種價格增長方式的差異.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知曲線為參數(shù))和曲線:(為參數(shù)).

          (1)化,的方程為普通方程,并說明它們分別表示什么曲線;

          (2)若上的點對應的參數(shù)為,上的動點,求中點到直線為參數(shù))距離的最小值及此時點的坐標.

          查看答案和解析>>

          同步練習冊答案