日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說明理由.

          【答案】(1) 當(dāng)時(shí),函數(shù)的單調(diào)減區(qū)間是;單調(diào)增區(qū)間是;當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是無單調(diào)減區(qū)間;當(dāng)時(shí),函數(shù)的單調(diào)減區(qū)間是單調(diào)增區(qū)間是.(2) 存在整數(shù)滿足題意,且的最小值為0.

          【解析】試題分析

          本題考查用導(dǎo)數(shù)討論函數(shù)的單調(diào)性和用導(dǎo)數(shù)解決函數(shù)中的能成立問題.(1)求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)性.(2)由題意只需求出函數(shù)的最小值即可,根據(jù)函數(shù)的單調(diào)性求解即可.

          試題解析

          由題意得函數(shù)的定義域?yàn)?/span>.

          ①當(dāng)時(shí),

          則當(dāng)時(shí), , 單調(diào)遞減;當(dāng)時(shí), , 單調(diào)遞增.

          ②當(dāng)時(shí), 恒成立, 上單調(diào)遞增.

          ③當(dāng)時(shí),

          則當(dāng)時(shí), 單調(diào)遞減當(dāng)時(shí), , 單調(diào)遞增.

          綜上,當(dāng)時(shí), 上單調(diào)遞減,在上單調(diào)遞增;

          當(dāng)時(shí),函數(shù)上單調(diào)遞增;

          當(dāng)時(shí), ,上單調(diào)遞增.

          (2)當(dāng)時(shí), ,

          ,

          函數(shù)單調(diào)遞增,

          ,

          所以存在唯一的,使得,

          且當(dāng)時(shí), 單調(diào)遞減當(dāng)時(shí), , 單調(diào)遞增,

          所以,

          設(shè),

          上單調(diào)遞減,

          所以,.

          若關(guān)于的不等式有解,則,

          為整數(shù),所以.

          所以存在整數(shù)滿足題意,且的最小值為0.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某直三棱柱被削去上底后的直觀圖與三視圖的側(cè)視圖、俯視圖,在直觀圖中,M是BD的中點(diǎn), ,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

          (Ⅰ)求證:EM平面ABC;

          (Ⅱ)求出該幾何體的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知在極坐標(biāo)系和直角坐標(biāo)系中,極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的非負(fù)半軸重合,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù).

          1)求曲線的直角坐標(biāo)方程和曲線的普通方程;

          (2)判斷曲線與曲線的位置關(guān)系,若兩曲線相交,求出兩交點(diǎn)間的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過3S微克/立方米, 24小時(shí)平均濃度不得超過75微克/立方米.某市環(huán)保局隨機(jī)抽取了一居民區(qū)20162024小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如圖表:

          組別

          濃度(微克/立方米)

          頻數(shù)天)

          頻率

          第一組

          3

          0.15

          第二組

          12

          0.6

          第三組

          3

          0.15

          第四組

          2

          0.1

          (Ⅰ)將這20天的測(cè)量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.

          (。┣髨D中的值;

          (ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.

          (Ⅱ)將頻率視為概率,對(duì)于2016年的某3天,記這3天中該居民區(qū)24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          )若的極值點(diǎn),的值;

          )若單調(diào)遞增的取值范圍

          )當(dāng)時(shí),方程有實(shí)數(shù)根,的最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,bc,已知

          1)求C

          2)若c=,ABC的面積為,求ABC的周長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)求函數(shù)的單調(diào)增區(qū)間;

          (2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了響應(yīng)我市“創(chuàng)建宜居港城,建設(shè)美麗莆田”,某環(huán)保部門開展以“關(guān)愛木蘭溪,保護(hù)母親河”為主題的環(huán)保宣傳活動(dòng),將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對(duì)每一段的南、北兩岸進(jìn)行環(huán)保綜合測(cè)評(píng),得到分值數(shù)據(jù)如下表:

          南岸

          77

          92

          84

          86

          74

          76

          81

          71

          85

          87

          北岸

          72

          87

          78

          83

          83

          85

          75

          89

          90

          95

          (Ⅰ)記評(píng)分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評(píng)分均為優(yōu)良的概率;

          (Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;

          )分別估計(jì)兩岸分值的中位數(shù),并計(jì)算它們的平均值,試從計(jì)算結(jié)果分析兩岸環(huán)保情況,哪邊保護(hù)更好.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于函數(shù)圖象的對(duì)稱性與周期性,有下列說法:若函數(shù)yf(x)滿足f(x1)f(3x),則f(x)的一個(gè)周期為T2若函數(shù)yf(x)滿足f(x1)f(3x),則f(x)的圖象關(guān)于直線x2對(duì)稱;函數(shù)yf(x1)與函數(shù)yf(3x)的圖象關(guān)于直線x2對(duì)稱;若函數(shù)與函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則,其中正確的個(gè)數(shù)是()

          A. 1 B. 2

          C. 3 D. 4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案