【題目】如圖,在三棱柱中,側(cè)棱
平面
,
,
,
,
,點(diǎn)
是
的中點(diǎn)
(1)證明: 平面
;
(2)在線段上找一點(diǎn)
,使得直線
與
所成角的為
,求
的值.
【答案】(Ⅰ)見解析;(Ⅱ)
【解析】試題分析:(1)證明線面平行,一般方法為利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找往往結(jié)合平幾知識(shí),如本題利用三角形中位線性質(zhì)得線線平行,(2)研究線線角,一般可利用空間向量數(shù)量積求解,先根據(jù)題意建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),寫出兩直線方向向量,再根據(jù)向量數(shù)量積求夾角余弦值,最后根據(jù)線線角與向量夾角關(guān)系列關(guān)系式,求出的值.
試題解析:(Ⅰ)證明:設(shè)與
相交于
,連結(jié)
,
是
的中點(diǎn),
是
的中點(diǎn),
∥
平面
,
平面
,
∥平面
(Ⅱ)建立空間直角坐標(biāo)系, 為
軸,
為
軸,
為
軸,
設(shè)
,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,已知
,點(diǎn)
在底面
的投影是線段
的中點(diǎn)
.
(1)證明:在側(cè)棱上存在一點(diǎn)
,使得
平面
,并求出
的長(zhǎng);
(2)求:平面與平面
夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動(dòng)點(diǎn)D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)OD⊥AB時(shí),求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以邊長(zhǎng)為4的等比三角形的頂點(diǎn)
以及
邊的中點(diǎn)
為左、右焦點(diǎn)的橢圓過
兩點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)且
軸不垂直的直線
交橢圓于
兩點(diǎn),求證直線
與
的交點(diǎn)在一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為矩形,
底面
,
,
,
為
上一點(diǎn),且
平面
.
(1)求的長(zhǎng)度;
(2)求與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,已知平面
面
,
,
,
,
.
(1)求證:平面平面
;
(2)直線與平面
所成角為
,求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線 上有一點(diǎn)列
過點(diǎn)
在x軸上的射影是
,且
1+
2+
3+…+
n=2n+1-n-2. (n∈N*)
(1)求數(shù)列{}的通項(xiàng)公式
(2)設(shè)四邊形 的面積是
,求
(3)在(2)條件下,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中
,命題
實(shí)數(shù)
滿足
|x-3|≤1 .
(1)若且
為真,求實(shí)數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com