日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為

          1)求曲線的直角坐標方程與直線l的參數方程;

          2)設直線與曲線交于,兩點,求的值.

          【答案】1,(為參數);(2.

          【解析】

          1)將曲線的極坐標方程兩邊同乘,根據公式即可化簡為直角坐標方程;根據已知信息,直接寫出直線的參數方程,整理化簡即可;

          2)聯立曲線的直角坐標方程和直線的參數方程,得到關于的一元二次方程,根據直線參數方程中參數的幾何意義,求得結果.

          (1)因為,所以,

          所以,即曲線的直角坐標方程為:,

          直線的參數方程(為參數)

          (為參數).

          (2)設點,對應的參數分別為,

          將直線的參數方程代入曲線的直角坐標方程,

          整理,得,

          所以,

          因為

          所以=,

          =4,

          所以=.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】試在①,②,③三個條件中選兩個條件補充在下面的橫線處,使得ABCD成立,請說明理由,并在此條件下進一步解答該題:

          如圖,在四棱錐中,,底ABCD為菱形,若__________,且,異面直線PBCD所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知四邊形是梯形,如圖,,,的中點,以為折痕把折起,使點到達點的位置(如圖2),且

          1)求證:平面平面;

          2)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】農歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】正方體ABCDA1B1C1D1中,E是棱DD1的中點,F是側面CDD1C1上的動點,且B1F∥平面A1BE,記B1F的軌跡構成的平面為α.

          F,使得B1FCD1

          ②直線B1F與直線BC所成角的正切值的取值范圍是[,]

          α與平面CDD1C1所成銳二面角的正切值為2

          ④正方體ABCDA1B1C1D1的各個側面中,與α所成的銳二面角相等的側面共四個.

          其中正確命題的序號是_____.(寫出所有正確的命題序號)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數方程為為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

          (Ⅰ)求的普通方程和的直角坐標方程;

          (Ⅱ)若交于,兩點,求的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知fx)=ex+sinx+axaR.

          (Ⅰ)當a=﹣2時,求證:fx)在(﹣∞,0)上單調遞減;

          (Ⅱ)若對任意x0,fx)≥1恒成立,求實數a的取值范圍;

          (Ⅲ)若fx)有最小值,請直接給出實數a的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】南北朝時期的偉大數學家祖暅在數學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為、,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則命題:“、相等”是命題、總相等”的(

          A.充分不必要條件B.必要不充分條件

          C.充要條件D.既不充分也不必要條件

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知橢圓Cab0)的焦距為2,且過點.

          1)求橢圓C的方程;

          2)已知△BMN是橢圓C的內接三角形,若坐標原點O為△BMN的重心,求點O到直線MN距離的最小值.

          查看答案和解析>>

          同步練習冊答案