日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的前n項(xiàng)和Sn,且3anSn4(nN*).

          (1)證明:{an}是等比數(shù)列;

          (2)anan1之間插入n個(gè)數(shù),使這n2個(gè)數(shù)成等差數(shù)列.記插入的n個(gè)數(shù)的和為Tn,求Tn的最大值.

          【答案】(1)證明見解析;(2) .

          【解析】試題分析:

          (1)由已知得,則當(dāng)時(shí), ,兩式相減,即可證明數(shù)列為首項(xiàng)為,公比為的等比數(shù)列;

          (2)由(1)得,求得,求得,即得,即可求得的最大值.

          試題解析:

          (1)證明 因?yàn)?/span>3an+Sn=4,所以Sn=4-3an(n∈N*),

          所以,當(dāng)n≥2時(shí),有Sn-1=4-3an-1

          上述兩式相減,得an=-3an+3an-1,

          即當(dāng)n≥2時(shí),.

          n=1時(shí),a1=4-3a1,a1=1.

          所以{an}是首項(xiàng)為1,公比為的等比數(shù)列.

          (2)解 由(1)an=a1·qn-1

          所以Tn,

          因?yàn)?/span>Tn+1-Tn

          ,

          所以T1<T2<T3,T3=T4,T4>T5>T6>…,

          所以Tn的最大值為T3=T4.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某運(yùn)輸公司接受了向一地區(qū)每天至少運(yùn)送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費(fèi)用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費(fèi)用最低,最低費(fèi)用為________元.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)ex(ln xa)(e是自然對(duì)數(shù)的底數(shù),

          e2.71 828).

          (1)yf(x)x1處的切線方程為y2exb,求ab的值.

          (2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: (a>b>0)的離心率為,焦距為2c,且c, ,2成等比數(shù)列.

          (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

          (Ⅱ)點(diǎn)B坐標(biāo)為(0, ),問是否存在過點(diǎn)B的直線l交橢圓C于M,N兩點(diǎn),且滿足 (O為坐標(biāo)原點(diǎn))?若存在,求出此時(shí)直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

          (1)證明:ACBD;

          (2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AEEC,求四面體ABCE與四面體ACDE的體積比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,過極點(diǎn)O的射線與曲線C相交于不同于極點(diǎn)的點(diǎn)A,且點(diǎn)A的極坐標(biāo)為(2,θ),其中θ.

          (1)θ的值;

          (2)若射線OA與直線l相交于點(diǎn)B,求|AB|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.

          (Ⅰ)求q,an

          (Ⅱ)若q<1,求滿足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實(shí)數(shù)的取值范圍為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為13,且成績(jī)分布在[40100],分?jǐn)?shù)在80以上(80)的同學(xué)獲獎(jiǎng).按文、理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

          (1)a的值,并計(jì)算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          (2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?

          文科生

          理科生

          合計(jì)

          獲獎(jiǎng)

          5

          不獲獎(jiǎng)

          合計(jì)

          200

          附表及公式:

          P(K2k0)

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習(xí)冊(cè)答案