日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.
          (1)求證:AB⊥PD;
          (2)在線段PB上是否存在一點(diǎn)E,使AE∥平面PCD,若存在,指出點(diǎn)E的位置并加以證明;若不存在,請說明理由.
          分析:(1)由PA⊥平面ABCD,推知PA⊥AB.又AB⊥AD,PA∩AD=A,從而有AB⊥平面PAD,證得AB⊥PD.
          (2)取線段PB的中點(diǎn)E,PC的中點(diǎn)F,連接AE,EF,DF,則EF是△PBC中位線.可推知四邊形EFDA是平行四邊形,轉(zhuǎn)化出AE∥DF.再由線面平行的判定定理得證.
          解答:精英家教網(wǎng)解:
          (1)證明∵PA⊥平面ABCD,AB?平面ABCD,
          ∴PA⊥AB.(2分)
          ∵AB⊥AD,PA∩AD=A,
          ∴AB⊥平面PAD,(5分)
          ∵PD?平面PAD,
          ∴AB⊥PD.(6分)

          (2)取線段PB的中點(diǎn)E,PC的中點(diǎn)F,連接AE,EF,DF,
          則EF是△PBC中位線.
          ∴EF∥BC,EF=
          1
          2
          BC
          ,
          ∵AD∥BC,AD=
          1
          2
          BC
          ,
          ∴AD∥EF,AD=EF.
          ∴四邊形EFDA是平行四邊形,(8分)
          ∴AE∥DF.
          ∵AE?平面PCD,DF?平面PCD,(10分)
          ∴AE∥平面PCD.(11分)
          ∴線段PB的中點(diǎn)E是符合題意要求的點(diǎn).(12分)
          ∴平面AEF∥平面PCD.(10分)
          ∵AE?平面AEF,
          ∴AE∥平面PCD.(11分)
          ∴線段PB的中點(diǎn)E是符合題意要求的點(diǎn).(12分)
          點(diǎn)評:本題主要考查了線面平行與線線平行,線面垂直和線線垂直間的轉(zhuǎn)化,考查了作圖能力和轉(zhuǎn)化問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),
          求證:
          (1)PC∥平面EBD.
          (2)平面PBC⊥平面PCD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
          (1)證明:AE⊥PD;
          (2)設(shè)AB=2,若H為線段PD上的動點(diǎn),EH與平面PAD所成的最大角的正切值為
          6
          2
          ,求AP的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點(diǎn)E是BC邊上的中點(diǎn).
          (1)求證:AD⊥面PDE;
          (2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
          8
          3
          3
          ;①求VP-ABED; ②求二面角P-AB-C大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點(diǎn),AB=2,AP=2.
          (1)求證:BD⊥平面PAC;
          (2)求二面角E-AF-C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點(diǎn)M,N分別在PD,PC上,
          PN
          =
          1
          2
          NC
          ,PM=MD.
          (Ⅰ) 求證:PC⊥面AMN;
          (Ⅱ)求二面角B-AN-M的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案