日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設拋物線的焦點為,點,線段的中點在拋物線上.設動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
          (1)求的值;
          (2)試判斷圓軸的位置關(guān)系;
          (3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.

          (1)   (2)見解析    (3)存在

          解析試題分析:
          (1)判斷拋物線的焦點位置,得到焦點坐標,利用中點坐標公式得到FA的中點坐標帶入拋物線即可求的P的值.
          (2)直線與拋物線相切,聯(lián)立直線與拋物線,判別式為0即可得到k,m之間的關(guān)系,可以用k來替代m,得到P點的坐標,拋物線準線與直線的方程可得到Q點的坐標,利用中點坐標公式可得到PQ中點坐標,通過討論k的取值范圍得到中點到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系.
          (3)由(2)可以得到PQ的坐標(用k表示),根據(jù)拋物線對稱性知點軸上,設點坐標為,則M點需滿足,即向量內(nèi)積為0,即可得到M點的坐標,M點的坐標如果為常數(shù)(不含k),即存在這樣的定點,如若不然,則不存在.
          試題解析:
          解:(1)利用拋物線的定義得,故線段的中點的坐標為,代入方程得,解得。                                2分
          (2)由(1)得拋物線的方程為,從而拋物線的準線方程為        3分
          得方程,
          由直線與拋物線相切,得                 4分
          ,從而,即,                   5分
          ,解得,                     6分
          的中點的坐標為
          圓心軸距離,
           

                            8分

          ∴當時,,圓軸相切;
          時,,圓軸相交;        9分
          (或,以線段為直徑圓的方程為:
           
          ∴當時,,圓軸相切;
          時,,圓軸相交;        9分
          (3)方法一:假設平面內(nèi)存在定點滿足條件,由拋物線對稱性知點軸上,設點

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
          (1)求動點M的軌跡C的方程;
          (2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若A是PB的中點,求直線m的斜率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓+=1(a>b>0),點P(a,a)在橢圓上.
          (1)求橢圓的離心率;
          (2)設A為橢圓的左頂點,O為坐標原點,若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          我們把離心率為e=的雙曲線(a>0,b>0)稱為黃金雙曲線.如圖,是雙曲線的實軸頂點,是虛軸的頂點,是左右焦點,在雙曲線上且過右焦點,并且軸,給出以下幾個說法:

          ①雙曲線x2-=1是黃金雙曲線;
          ②若b2=ac,則該雙曲線是黃金雙曲線;
          ③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
          ④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
          其中正確的是(  )

          A.①②④B.①②③C.②③④D.①②③④

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,橢圓過點P(1, ),其左、右焦點分別為F1,F2,離心率e=, M, N是直線x=4上的兩個動點,且·=0.

          (1)求橢圓的方程;
          (2)求MN的最小值;
          (3)以MN為直徑的圓C是否過定點?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
          點(1,)在該橢圓上.
          (1)求橢圓C的方程;
          (2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設點P是圓x2y2=4上任意一點,由點Px軸作垂線PP0,垂足為P0,且.
          (1)求點M的軌跡C的方程;
          (2)設直線lykxm(m≠0)與(1)中的軌跡C交于不同的兩點A,B.
          若直線OAAB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C=1(ab>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CE、G兩點,且△EGF2的周長為4.
          (1)求橢圓C的方程;
          (2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足t (O為坐標原點),當||<時,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,已知△OFQ的面積為S,且·=1.設||=c(c≥2),S=c.若以O為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當||取最小值時,求橢圓的方程.

          查看答案和解析>>

          同步練習冊答案