已知橢圓:
的離心率
,原點(diǎn)到過點(diǎn)
,
的直線的距離是
.
(1)求橢圓的方程;
(2)若橢圓上一動點(diǎn)
關(guān)于直線
的對稱點(diǎn)為
,求
的取值范圍;
(3)如果直線交橢圓
于不同的兩點(diǎn)
,
,且
,
都在以
為圓心的圓上,求
的值.
(1)(2)
(3)
解析試題分析:(1)由截距式可得直線的方程,根據(jù)點(diǎn)到線的距離公式可得
間的關(guān)系,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/7/x7qxb1.png" style="vertical-align:middle;" />,解方程組可得
的值。(2)由點(diǎn)關(guān)于直線的對稱點(diǎn)問題可知直線
和直線
垂直,且
的中點(diǎn)在直線
上,由此可用
表示出
。再將點(diǎn)
代入橢圓方程將
用
表示代入上式,根據(jù)橢圓方程可的
的范圍,從而可得出所求范圍。(3)將直線
和橢圓方程聯(lián)立,消去
得關(guān)于
的一元二次方程,根據(jù)韋達(dá)定理可得根與系數(shù)的關(guān)系。根據(jù)題意可知
,可根據(jù)斜率相乘等于
列出方程,也可轉(zhuǎn)化為向量數(shù)量積為0列出方程。
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cf/1/1ydfx2.png" style="vertical-align:middle;" />,,所以
.
因?yàn)樵c(diǎn)到直線:
的距離
,解得
,
.
故所求橢圓的方程為
. 4分
(Ⅱ)因?yàn)辄c(diǎn)關(guān)于直線
的對稱點(diǎn)為
,
所以 解得
,
.
所以.
因?yàn)辄c(diǎn)在橢圓
:
上,所以
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/65/e/b8iux1.png" style="vertical-align:middle;" />, 所以.所以
的取值范圍為
. 8分
(Ⅲ)由題意消去
,整理得
.可知
.
設(shè),
,
的中點(diǎn)是
,
則,
.
所以. 所以
.
即 . 又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/e/kilep3.png" style="vertical-align:middle;" />,
所以.
所以 13分
考點(diǎn):1點(diǎn)到線的距離; 2橢圓方程;3點(diǎn)關(guān)于線的對稱點(diǎn);4轉(zhuǎn)換思想。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知左焦點(diǎn)為F(-1,0)的橢圓過點(diǎn)E(1,).過點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1;
(3)若k1+k2=1,求證直線MN恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設(shè)動直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q,證明以PQ為直徑的圓恒過y軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線y=-2上有一個動點(diǎn)Q,過點(diǎn)Q作直線l1垂直于x軸,動點(diǎn)P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當(dāng)點(diǎn)(0,2)到直線l2的距離最短時,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的橢圓C的一個焦點(diǎn)為F(4,0),長軸端點(diǎn)到較近焦點(diǎn)的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點(diǎn).
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點(diǎn)D,使||=|
|?若存在,求出D點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn)P(4,-
).
(1)求雙曲線的方程.
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·
=0.
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心為原點(diǎn)
,左、右焦點(diǎn)分別為
、
,離心率為
,點(diǎn)
是直線
上任意一點(diǎn),點(diǎn)
在雙曲線
上,且滿足
.
(1)求實(shí)數(shù)的值;
(2)證明:直線與直線
的斜率之積是定值;
(3)若點(diǎn)的縱坐標(biāo)為
,過點(diǎn)
作動直線
與雙曲線右支交于不同的兩點(diǎn)
、
,在線段
上去異于點(diǎn)
、
的點(diǎn)
,滿足
,證明點(diǎn)
恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的兩個焦點(diǎn)分別為F1,F(xiàn)2,離心率為
,且過點(diǎn)(2,
).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)M,N,P,Q是橢圓C上的四個不同的點(diǎn),兩條都不和x軸垂直的直線MN和PQ分別過點(diǎn)F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD的底邊AB在y軸上,原點(diǎn)O為AB的中點(diǎn),M為CD的中點(diǎn).
(1)求點(diǎn)M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),使
,且P點(diǎn)到A、B 的距離和為定值,求點(diǎn)P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點(diǎn),求
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com