日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項均為正數(shù)的數(shù)列的前項和為,數(shù)列的前項和為,且.

          ⑴證明:數(shù)列是等比數(shù)列,并寫出通項公式;

          ⑵若恒成立,求的最小值;

          ⑶若成等差數(shù)列,求正整數(shù)的值.

           

          【答案】

          (1)證明見解析,;(2)3;(3)

          【解析】

          試題分析:(1)要證數(shù)列是等比數(shù)列,可根據(jù)題設(shè)求出,當(dāng)然也可再求,雖然得出的成等比數(shù)列,但前面有限項成等比不能說明所有項都成等比,必須嚴(yán)格證明.一般方法是把已知式中的代換得到,兩式相減得,這個式子中把代換又得,兩式再相減,正好得出數(shù)列的前后項關(guān)系的遞推關(guān)系,正是等比數(shù)列的表現(xiàn).(2)由題間,對不等式用分離參數(shù)法得,求的最小值就與求的最大值(也只要能是取值范圍)聯(lián)系起來了.(3)只能由成等差數(shù)列列出唯一的等式,這個等式是關(guān)于的二元方程,它屬于不定方程,有無數(shù)解,只是由于都是正整數(shù),利用正整數(shù)的性質(zhì)可得出具體的解.

          試題解析:(1)當(dāng)n=1時,;當(dāng)n=2時,

          當(dāng)n3時,有 得:

          化簡得:    3分

              ∴

          是1為首項,為公比的等比數(shù)列

                6分

          (2)

              ∴      11分

          (3)若三項成等差,則有

          ,右邊為大于2的奇數(shù),左邊為偶數(shù)或1,不成立

                16分

          考點:(1)等比數(shù)列的通項公式;(2)不等式恒成立與函數(shù)的最值;(3)不定方程的正整數(shù)解問題.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:青島二模 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
          Tn+1+12
          4Tn
          2log2bn+1+2
          2log2bn-1
          的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

          已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
          (Ⅰ)求數(shù){an}的通項公式;
          (Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊答案