日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,|BC|=2|AC|.
          (I)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
          (II)如果橢圓上有兩點(diǎn)P、Q,使∠PCQ的平分線垂直于AO,證明:存在實(shí)數(shù)λ,使

          【答案】分析:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程,根據(jù)長(zhǎng)軸求得a,點(diǎn)A是長(zhǎng)軸的一個(gè)頂點(diǎn)可求得A的坐標(biāo).根據(jù) 判斷△AOC是等腰直角三角形,進(jìn)而求得C的坐標(biāo)代入橢圓的方程求得b,最后可得橢圓的方程.
          (Ⅱ)設(shè)直線PC的方程與橢圓方程聯(lián)立,消元后根據(jù)△>0判斷k的范圍.設(shè)點(diǎn)P(x1,y1)由韋達(dá)定理可求得x1和y1關(guān)于k的表達(dá)式,直線CP、CQ與x軸圍成底邊在x軸上的等腰三角形推斷直線CP、CQ的斜率互為相反數(shù),進(jìn)而得到k的范圍,同樣的設(shè)點(diǎn)Q(x2,y2),根據(jù)韋達(dá)定理求得x2和y2關(guān)于k的表達(dá)式,根據(jù)橢圓是中心對(duì)稱圖形求得點(diǎn)B的坐標(biāo),根據(jù) 關(guān)系得證.
          解答:解:(I)以O(shè)為原點(diǎn),OA為X軸建立直角坐標(biāo)系,設(shè)A(2,0),則橢圓方程為…2′
          ∵O為橢圓中心,∴由對(duì)稱性知|OC|=|OB|
          又∵,∴AC⊥BC
          又∵|BC|=2|AC|∴|OC|=|AC|
          ∴△AOC為等腰直角三角形
          ∴點(diǎn)C的坐標(biāo)為(1,1)∴點(diǎn)B的坐標(biāo)為(-1,-1)…4
          將C的坐標(biāo)(1,1)代入橢圓方程得
          則求得橢圓方程為…6′
          (II)由于∠PCQ的平分線垂直于OA(即垂直于x軸),不妨設(shè)PC的斜率為k,則QC的斜率為-k,因此PC、QC的直線方程分別為y=k(x-1)+1,y=-k(x-1)+1
          得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0*)…8′
          ∵點(diǎn)C(1,1)在橢圓上,
          ∴x=1是方程(*)的一個(gè)根,∴xP•1=即xP=
          同理xQ=…9′
          ∴直線PQ的斜率為(定值)…11′
          又∠ACB的平分線也垂直于OA
          ∴直線PQ與AB的斜率相等(∵kAB=
          ∴向量,即總存在實(shí)數(shù)λ,使成立.…12′
          點(diǎn)評(píng):本題以向量為載體,主要考查了橢圓的標(biāo)準(zhǔn)方程和平面向量的知識(shí).能考查學(xué)生綜合運(yùn)用所學(xué)知識(shí)的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
          3
          ,0),BC
          過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
          (Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
          (Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
          PQ
          AB
          是否共線,并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)上的三點(diǎn),,BC過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且
          AC
          BC
          =0
          ,|BC|=2|AC|.
          (I)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
          (II)如果橢圓上有兩點(diǎn)P、Q,使∠PCQ的平分線垂直于AO,證明:存在實(shí)數(shù)λ,使
          PQ
          AB

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,已知A,B,C是圓O上三個(gè)點(diǎn),AB弧等于BC弧,D為弧AC上一點(diǎn),過(guò)點(diǎn)A做圓O的切線交BD延長(zhǎng)線于E
          (1)求證:AB平分∠CAE;
          (2)若AD•BE=2
          6
          ,∠ADE=30°
          ,求△ABE的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,已知A、B、C是橢圓E:=1(a>b>0)上的三點(diǎn),其中點(diǎn)  

          A的坐標(biāo)為(2,0),BC過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.

          (1)求點(diǎn)C的坐標(biāo)及橢圓E的方程;

          (2)若橢圓E上存在兩點(diǎn)P、Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量是否共線,并給出證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案