日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9、已知a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)增函數(shù),則a的最大值是( 。
          分析:由題意a>0,函數(shù)f(x)=x3-ax,首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系進(jìn)行判斷.
          解答:解:由題意得f′(x)=3x2-a,
          ∵函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)增函數(shù),
          ∴在[1,+∞)上,f′(x)≥0恒成立,
          即a≤3x2在[1,+∞)上恒成立,
          ∴a≤3,
          故選D.
          點評:此題主要考查函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,掌握并會熟練運用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
          A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)求函數(shù)f(x)在[0,1]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
          (Ⅰ)當(dāng)a=
          1
          8

          ①求f(x)的單調(diào)區(qū)間;
          ②證明:存在x0∈(2,+∞),使f(x0)=f(
          3
          2
          );
          (Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
          ln3-ln2
          5
          ≤a≤
          ln2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=
          |x-2a|
          x+2a
          在區(qū)間[1,4]上的最大值等于
          1
          2
          ,則a的值為
           

          查看答案和解析>>

          同步練習(xí)冊答案