日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】過直角坐標平面xOy中的拋物線y2=2px(p>0)的焦點F作一條傾斜角為的直線與拋物線相交于AB兩點.

          (1)用p表示線段AB的長;

          (2)若,求這個拋物線的方程.

          【答案】(1)4p(2)y2=4x.

          【解析】試題分析:(1)先根據(jù)點斜式寫出直線方程,再與拋物線聯(lián)立方程組,利用韋達定理得兩根之和,最后根據(jù)拋物線定義求線段AB的長;(2)先根據(jù)向量數(shù)量積化簡,再根據(jù)點斜式設直線方程,與拋物線聯(lián)立方程組,利用韋達定理代入關系式,解出p

          試題解析:解:(1)拋物線的焦點為F,過點F且傾斜角為的直線方程是yx.設A(x1y1),B(x2y2),聯(lián)立

          x2-3px=0,∴x1x2=3p,x1x2,∴ABx1x2p=4p.

          (2)由(1)知x1x2,x1x2=3p

          y1y2x1x2 (x1x2)+=-p2,

          OA―→·OB―→=x1x2y1y2p2=-=-3,

          解得p2=4,

          p=2.

          這個拋物線的方程為y2=4x.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某校高二年級學生會有理科生4名,其中3名男同學;文科生3名,其中有1名男同學.從這7名成員中隨機抽4人參加高中示范校驗收活動問卷調查.

          (Ⅰ)設為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

          (Ⅱ)設為選出的4人中男生人數(shù)與女生人數(shù)差的絕對值,求隨機變量的分布列和數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓

          1若圓的切線在軸和軸上的截距相等,求此切線的方程.

          2)從圓外一點向該圓引一條切線,切點為, 為坐標原點,且有,求使得取得最小值的點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,三棱錐中,平面,,的中點,的中點,點上,.

          (1)證明:平面;

          (2)若,求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若不等式ax2+5x﹣2>0的解集是 ,
          (1)求實數(shù)a的值;
          (2)求不等式ax2﹣5x+a2﹣1>0的解集.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(本題滿分12分)已知,函數(shù)

          )若,求曲線在點處的切線方程.

          )若,求在閉區(qū)間上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.

          (Ⅰ)已知數(shù)列:1,m+1m2是“K數(shù)列”,求實數(shù)的取值范圍;

          (Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足

          ?若存在,求出的通項公式;若不存在,請說明理由;

          (Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】本小題滿分10分)

          某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元該企業(yè)在一個生產(chǎn)周期內消耗A原料不超過13噸,B原料不超過18噸.那么在一個生產(chǎn)周期內該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸可獲得最大利潤,最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 a=2csinA
          (1)確定角C的大小;
          (2)若c= ,且△ABC的面積為 ,求a+b的值.

          查看答案和解析>>

          同步練習冊答案