日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)為
          2

          (1)設(shè)側(cè)棱長(zhǎng)為1,求證:AB1⊥BC1;
          (2)設(shè)AB1與BC1的夾角為
          π
          3
          ,求側(cè)棱的長(zhǎng).
          分析:(1)取BC中點(diǎn)D,連接AD,B1D,得面ABC⊥面BCC1B1.再利用直線與平面垂直的判定定理得出AD⊥面BCC1B1于是Rt△CBC1與Rt△BB1D相似,最后得AB1⊥BC1;
          (2)取BC1的中點(diǎn)D,AC的中點(diǎn)E,連DE,則DE∥AB1,∠EDB即為A B1與B C1
          π
          3
          角,利用等邊三角形EDB中,BD的長(zhǎng),從而得出側(cè)棱的長(zhǎng).
          解答:解:(1)取BC中點(diǎn)D,連接AD,B1D,
          由正三棱錐ABC-A1B1C1,得面ABC⊥面BCC1B1
          又D為三角形ABC的邊BC的中點(diǎn),故
          AD⊥BC,于是AD⊥面BCC1B1
          在矩形BCC1B1中,BC=
          2
          ,BB1=1,
          于是Rt△CBC1與Rt△BB1D相似,
          ∠CBC1=∠BB1D,BC1⊥DB1
          得AB1⊥BC1

          (2)取BC1的中點(diǎn)D,AC的中點(diǎn)E,連DE,則DE∥AB1,∠EDB即為A B1與B C1成600角,
          ∴∠EDB=60°,在等邊三角形EDB中,BD=BE=
          6
          2

          ∴BC1=2BD=
          6
          ,?BB1=
          6-2
          =2
          ∴側(cè)棱長(zhǎng)為2(14分)
          點(diǎn)評(píng):本小題主要考查棱柱的結(jié)構(gòu)特征、直線與平面的位置關(guān)系、異面直線所成的角等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長(zhǎng)都等于a,E是BB1的中點(diǎn).
          (1)求直線C1B與平面A1ABB1所成角的正弦值;
          (2)求證:平面AEC1⊥平面ACC1A1;
          (3)求點(diǎn)C1到平面AEC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長(zhǎng)是( 。
          A、2
          B、
          3
          C、
          5
          D、
          7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
          (Ⅰ)求證:AB1⊥平面A1BD;
          (Ⅱ)求二面角A-A1D-B的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
          (Ⅰ)求證:AB1⊥面A1BD;
          (Ⅱ)設(shè)點(diǎn)O為AB1上的動(dòng)點(diǎn),當(dāng)OD∥平面ABC時(shí),求
          AOOB1
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
          (Ⅰ)求多面體ABC-A1PC1的體積;
          (Ⅱ)求A1Q與BC1所成角的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案