日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),

          (1)若,求函數(shù)的單調(diào)區(qū)間與極值;

          (2)若在區(qū)間上至少存在一點,使成立,求實數(shù)的取值范圍.

          【答案】(1)見解析;(2).

          【解析】試題分析:(1)求出的表達(dá)式,定義域以及導(dǎo)數(shù),然后判斷導(dǎo)函數(shù)的符號,求出單調(diào)區(qū)間.

          (2)若在區(qū)間上至少存在一點,使成立,其充要條件是在區(qū)間上的最小值小于0即可.利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)上的最小值,先求出導(dǎo)函數(shù)f,然后討論研究函數(shù)在上的單調(diào)性,將的各極值與其端點的函數(shù)值比較,其中最小的一個就是最小值.

          試題解析:(1)當(dāng)時,,令,解得,又函數(shù)的定義域為,由 ,得,由,得,

          所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

          時,有極小值,無極大值

          (2)若在上存在一點,使得成立,即在區(qū)間上單調(diào)遞減

          在區(qū)間上的最小值為,

          ,得,

          當(dāng)時,

          ①若,則成立,所以在區(qū)間上單調(diào)遞減

          在區(qū)間上的最小值為,

          顯然,在區(qū)間的最小值小于不成立.

          ②若,即時,則有單減,單增,

          所以在區(qū)間上的最小值為,由

          ,解得,即,綜上,.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,第1個圖形由正三角形擴展而成,共12個頂點.第n個圖形是由正n+2邊形擴展而來 ,則第n+1個圖形的頂點個數(shù)是 (  )

          (1) (2)(3) (4)

          A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某服裝批發(fā)市場1-5月份的服裝銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:

          月份

          1

          2

          3

          4

          5

          銷售量 (萬件)

          3

          6

          4

          7

          8

          利潤 (萬元)

          19

          34

          26

          41

          46

          1)從這五個月的利潤中任選2分別記為, ,求事件 均不小于30”的概率;

          2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請根據(jù)前4個月的數(shù)據(jù),求出關(guān)于的線性回歸方程

          3)若由線性回歸方程得到的利潤的估計數(shù)據(jù)與真實數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤的估計數(shù)據(jù)是理想的請用表格中第5個月的數(shù)據(jù)檢驗由(2)中回歸方程所得的第5個月的利潤的估計數(shù)據(jù)是否理想參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù).

          (1)的兩個不同零點,是否存在實數(shù),使成立?若存在,的值;若不存在,請說明理由.

          (2)設(shè),函數(shù),存在個零點.

          (i)的取值范圍;

          (ii)設(shè)分別是這個零點中的最小值與最大值,的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以“你我中國夢,全民建小康”為主題“社會主義核心價值觀”為主線,為了解、兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準(zhǔn)備工作的滿意程度,對、地區(qū)的名觀眾進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下:

          非常滿意

          滿意

          合計

          合計

          在被調(diào)查的全體觀眾中隨機抽取名“非常滿意”的人是地區(qū)的概率為,且.

          (1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少?

          (2)在(1)抽取的“滿意”的觀眾中,隨機選出人進(jìn)行座談,求至少有兩名是地區(qū)觀眾的概率?

          (3)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系?

          附:

          ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          )當(dāng)時,證明:為偶函數(shù);

          )若上單調(diào)遞增,求實數(shù)的取值范圍;

          )若,求實數(shù)的取值范圍,使上恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點在橢圓上.若點,且.

          (1)求橢圓的離心率;

          (2)設(shè)橢圓的焦距為4,,是橢圓上不同的兩點,線段的垂直平分線為直線,且直線不與軸重合.

          ①若點,直線過點,求直線的方程;

          ② 若直線過點,且與軸的交點為,求點橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)是定義在R上的奇函數(shù),

          (1)求實數(shù)的值

          (2)如果對任意,不等式恒成立,求實數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校參加夏令營的同學(xué)有3名男同學(xué)3名女同學(xué),其所屬年級情況如下表:

          高一年級

          高二年級

          高三三年級

          男同學(xué)

          女同學(xué)

          現(xiàn)從這6名同學(xué)中隨機選出2人參加知識競賽(每人被選到的可能性相同)

          1)用表中字母寫出這個試驗的樣本空間;

          2)設(shè)為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,寫出事件的樣本點,并求事件發(fā)生的概率.

          查看答案和解析>>

          同步練習(xí)冊答案