科目: 來源: 題型:
【題目】某支教隊有8名老師,現(xiàn)欲從中隨機選出2名老師參加志愿活動,
(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊男、女老師的人數(shù);
(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出
的分布列.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學,英語,物理,化學各一節(jié)課.要求語文與化學相鄰,數(shù)學與物理不相鄰,且數(shù)學課不排第一節(jié),則不同排課法的種數(shù)是
A. 24B. 16C. 8D. 12
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標原點為極點,
軸正半軸為極軸,建立極坐標系,已知曲線
的極坐標方程為
.
(1)求直線的普通方程與曲線
的直角坐標方程;
(2)設(shè)點,直線
與曲線
交于不同的兩點
、
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表
(2)此資料我們能否有95%的把握認為“歌迷”與性別有關(guān)?
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,證明:
;
(Ⅲ)求證:對任意正整數(shù),都有
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.
(1)估計這組數(shù)據(jù)平均數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,
的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總計,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(其中
是自然對數(shù)的底數(shù)),
.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)設(shè),若
滿足
且
,試判斷方程
的實數(shù)根個數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出
條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的
列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?
(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為
元,
元,
元的 三種騎行券.用戶每次使用
掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得
元券,獲得
元券的概率分別是
,
,且各次獲取騎行券的結(jié)果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為
,求隨機變量
的分布列和數(shù)學期望.
參考數(shù)據(jù):
參考公式:,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形的直角邊的邊長分別是3和4,在繪圖內(nèi)隨機取一點,則此點取自小正方形的概率為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com