科目: 來源: 題型:
【題目】甲乙兩人各有三張卡片,甲的卡片分別標有數(shù)字1、2、3,乙的卡片分別標有數(shù)字0、1、3.兩人各自隨機抽出一張,甲抽出的卡片上的數(shù)字記為,乙抽出的卡片上的數(shù)字記為
,則
與
的積為奇數(shù)的概率為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學利用周末組織教職員工進行了一次秋季登山健身的活動,有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,
,
,
,
,
,
等七組,其頻率分布直方圖如圖所示,已知
這組的參加者是6人.
(1)已知和
這兩組各有2名數(shù)學教師,現(xiàn)從這兩個組中各選取2人擔任接待工作,設兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學老師的概率;
(2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數(shù)為
,求
的分布列和均值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某人事部門對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級成功,否則晉級失敗(滿分為100分).
(1)求圖中的值;
(2)估計該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);
(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關.
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 來源: 題型:
【題目】雅山中學采取分層抽樣的方法從應屆高三學生中按照性別抽出20名學生作為樣本,其選報文科理科的情況如下表所示.
男 | 女 | |
文科 | 2 | 5 |
理科 | 10 | 3 |
(Ⅰ)若在該樣本中從報考文科的學生中隨機地選出3人召開座談會,試求3人中既有男生也有女生的概率;
(Ⅱ)用假設檢驗的方法分析有多大的把握認為雅山中學的高三學生選報文理科與性別有關?
參考公式和數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.07 | 2.71 | 3.84 | 5.02 | 6.64 | 7.88 | 10.83 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
上是增函數(shù),求實數(shù)
的取值范圍;
(2)若函數(shù)在
上的最小值為3,求實數(shù)
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程
,并預測6月份該商場空調的銷售量;
(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數(shù)表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校在高二數(shù)學競賽初賽后,對90分及以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若分數(shù)段的參賽學生人數(shù)為2.
(1)求該校成績在分數(shù)段的參賽學生人數(shù);
(2)估計90分及以上的學生成績的眾數(shù)、中位數(shù)和平均數(shù)(結果保留整數(shù))
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓:
的左、右焦點分別為
,
軸,直線
交
軸于
點,
,
為橢圓
上的動點,
的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓
分別交于
且使
軸,如圖,問四邊形
的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com