科目: 來(lái)源: 題型:
【題目】如圖,四棱錐S-ABCD的底面是邊長(zhǎng)為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,直線平面
,直線
平行四邊形
,四棱錐
的頂點(diǎn)
在平面
上,
,
,
,
,
分別是
與
的中點(diǎn).
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,∠C=,
,M,N分別是BC,AB的中點(diǎn),將△BMN沿直線MN折起,使二面角B'-MN-B的大小為
,則B'N與平面ABC所成角的正切值是( )
A.B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】下列命題正確的是
(1)命題“,
”的否定是“
,
”;
(2)l為直線,,
為兩個(gè)不同的平面,若
,
,則
;
(3)給定命題p,q,若“為真命題”,則
是假命題;
(4)“”是“
”的充分不必要條件.
A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱錐的底面為菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
,E為PC的中點(diǎn).
(1)求直線DE與平面PAC所成角的大小;
(2)求二面角E-AD-C平面角的正切值;
(3)在線段PC上是否存在一點(diǎn)M,使PC⊥平面MBD成立.如果存在,求出MC的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,裝2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得優(yōu)惠的概率;
(2)若某顧客選擇方案二,請(qǐng)分別計(jì)算該顧客獲得半價(jià)優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;
(3)若小明的購(gòu)物金額為320元,你覺得小明應(yīng)該選取哪個(gè)方案,為什么?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,∠ABC=,
,∠ADC=
,PA⊥平面ABCD且PA=
.
(1)求直線AD到平面PBC的距離;
(2)求出點(diǎn)A到直線PC的距離;
(3)在線段AD上是否存在一點(diǎn)F,使點(diǎn)A到平面PCF的距離為.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓,四點(diǎn)
中恰有三點(diǎn)在橢圓上.
(1)求橢圓C的方程
(2)橢圓C上是否存在不同的兩點(diǎn)M,N關(guān)于直線對(duì)稱?若存在,請(qǐng)求出直線MN的方程,若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)直線l不經(jīng)過(guò)點(diǎn)且與C相交于A,B兩點(diǎn),若直線
與直線
的斜率之和為1,求證直線l必過(guò)定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
(1)求以橢圓C的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程;
(2)過(guò)橢圓C的左焦點(diǎn)且傾斜角為的直線與橢圓交于A,B兩點(diǎn),求
的面積;
(3)過(guò)定點(diǎn)的直線交橢圓C于AB兩點(diǎn),求弦AB中點(diǎn)P的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com