科目: 來源: 題型:
【題目】設(shè),
是兩條不同的直線,
,
,
是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,
,則
②若,
,
,則
③若,
,則
④若,
,則
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)是拋物線
上一點(diǎn),
為
的焦點(diǎn).
(1)若,
是
上的兩點(diǎn),證明:
,
,
依次成等比數(shù)列.
(2)過作兩條互相垂直的直線與
的另一個(gè)交點(diǎn)分別交于
,
(
在
的上方),求向量
在
軸正方向上的投影的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程
中斜率與截距的最小二乘估計(jì)公式分別為
=
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2x3﹣3ax2+1.
(1)若a=﹣1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有且只有2個(gè)不同的零點(diǎn),求實(shí)數(shù)a的值;
(3)若函數(shù)y=|f(x)|在[0,1]上的最小值是0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓1(a>b>0)的右頂點(diǎn)為(2,0),離心率為
,P是直線x=4上任一點(diǎn),過點(diǎn)M(1,0)且與PM垂直的直線交橢圓于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)若P點(diǎn)的坐標(biāo)為(4,3),求弦AB的長(zhǎng)度;
(3)設(shè)直線PA,PM,PB的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,我國(guó)某海岸線可看作由圓弧AB和射線BC連接而成,其中圓弧AB所在圓O的半徑為12海里,圓心角為120°,規(guī)定外輪除特許外,不得進(jìn)入離我國(guó)海岸線12海里以內(nèi)的區(qū)域.在港口A處設(shè)有觀察站,外輪一旦進(jìn)入規(guī)定區(qū)域,觀察站會(huì)接收到預(yù)警信號(hào),現(xiàn)從A處測(cè)得一外輪在北偏東60°,距離港口x海里的P處,沿直線PA方向航行.
(1)當(dāng)x=30時(shí),分別求出外輪到海岸線BC和弧AB的最短距離,并判斷觀察站是否接收到預(yù)警信號(hào)?
(2)當(dāng)x為何值時(shí),觀察站開始接收到預(yù)警信號(hào)?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是平面內(nèi)兩個(gè)不共線的非零向量,
,
,
,且
三點(diǎn)共線.
(1)求實(shí)數(shù)的值;
(2)已知,點(diǎn)
,若
四點(diǎn)按逆時(shí)針順序構(gòu)成平行四邊形,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線與圓錐曲線C相交于A,B兩點(diǎn),與
軸、
軸分別交于D、E兩點(diǎn),且滿足
.
(1)已知直線的方程為
,且A的橫坐標(biāo)小于B的橫坐標(biāo),拋物線C的方程為
,求
的值;
(2)已知雙曲線,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點(diǎn),
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓:
,過坐標(biāo)原點(diǎn)
的直線
交
于
,
兩點(diǎn),點(diǎn)
在第一象限,
軸,垂足為
.連結(jié)
并延長(zhǎng)交
于點(diǎn)
.
(1)設(shè)到直線
的距離為
,求
的取值范圍;
(2)求面積的最大值及此時(shí)直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com