科目: 來源: 題型:
【題目】定義函數(shù),
(0,
)為
型函數(shù),共中
.
(1)若是
型函數(shù),求函數(shù)
的值域;
(2)若是
型函數(shù),求函數(shù)
極值點個數(shù);
(3)若是
型函數(shù),在
上有三點A、B、C橫坐標(biāo)分別為
、
、
,其中
<
<
,試判斷直線AB的斜率與直線BC的斜率的大小并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】給定橢圓:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準(zhǔn)圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)設(shè)橢圓短軸的一個端點為,長軸的一個端點為
,點
是“準(zhǔn)圓”上一動點,求三角形
面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點P(0,1)且互相垂直的兩條直線分別與圓O:交于點A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點C,D.
(1)若AB=,求CD的長;
(2)若CD中點為E,求△ABE面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等腰梯形,
.現(xiàn)將
沿著
折起,使得面
面
,點F為線段BC上一動點.
(1)證明:;
(2)如果F為BC中點,證明:面
;
(3)若二面角的余弦值為
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費,預(yù)計當(dāng)每件商品的售價為
元時,一年的銷售量為
萬件.
(1)求該連鎖分店一年的利潤(萬元)與每件商品的售價
的函數(shù)關(guān)系式
;
(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】目前用外賣網(wǎng)點餐的人越來越多.現(xiàn)對大眾等餐所需時間情況進(jìn)行隨機(jī)調(diào)查,并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖).其中等餐所需時間的范圍是,樣本數(shù)據(jù)分組為
,
,
,
,
.
(1)求直方圖中的值;
(2)某同學(xué)在某外賣網(wǎng)點了一份披薩,試估計他等餐時間不多于小時的概率;
(3)現(xiàn)有名學(xué)生都分別通過外賣網(wǎng)進(jìn)行了點餐,這
名學(xué)生中等餐所需時間少于
小時的人數(shù)記為
,求
的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目.若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.某學(xué)校為了了解高一年級200名學(xué)生選考科目的意向,隨機(jī)選取20名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有5人 | 5 | 5 | 2 | 1 | 2 | 0 |
選考方案待確定的有7人 | 6 | 4 | 3 | 2 | 4 | 2 | |
女生 | 選考方案確定的有6人 | 3 | 5 | 2 | 3 | 3 | 2 |
選考方案待確定的有2人 | 1 | 2 | 1 | 0 | 1 | 1 |
(1)在選考方案確定的男生中,同時選考物理、化學(xué)、生物的人數(shù)有多少?
(2)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)已知雙曲線與橢圓有相同焦點,且過點
,求雙曲線標(biāo)準(zhǔn)方程;
(2)已知橢圓的一個焦點為
,橢圓上一點
到焦點
的最大距離是3,求這個橢圓的離心率.
查看答案和解析>>
科目: 來源: 題型:
【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.
(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件
發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動次數(shù)之差的絕對值,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com