科目: 來(lái)源: 題型:
【題目】給出下列四個(gè)說(shuō)法,其中正確的是( )
A.命題“若,則
”的否命題是“若
,則
”
B.“”是“雙曲線
的離心率大于
”的充要條件
C.命題“,
”的否定是“
,
”
D.命題“在中,若
,則
是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為
,過(guò)
且斜率為
的直線
與
交于
,
兩點(diǎn),
.
(1)求的方程;
(2)求過(guò)點(diǎn),
且與
的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】有下列幾個(gè)命題:①“若p,則q”的否命題是“若,則
”;②p是q的必要條件,r是q的充分不必要條件,則p是r的必要不充分條件;③若“
”為真命題,則命題p,q中至多有一個(gè)為真命題;④過(guò)點(diǎn)
的直線和圓
相切的充要條件是直線斜率為
.其中為真命題的有( )
A.①②B.①②③C.①③④D.①②③④
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,
是矩形,
,
,
,
,
為
的中點(diǎn).
(1)平面平面
(2)在線段上是否存在點(diǎn)
,使二面角
的大小為
?若存在,求出
的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購(gòu)已經(jīng)逐漸融入了人們的生活,在家里不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門口,所以選擇網(wǎng)購(gòu)的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計(jì)了2014年一2018年五年來(lái)在該網(wǎng)店的購(gòu)買人數(shù)(單位:人)各年份的數(shù)據(jù)如下表:
年份( | 1 | 2 | 3 | 4 | 5 |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與時(shí)間
(單位:年)的關(guān)系,請(qǐng)通過(guò)計(jì)算相關(guān)系數(shù)
加以說(shuō)明,(若
,則該線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式
參考數(shù)據(jù)
(2)該網(wǎng)店為了更好的設(shè)計(jì)2019年的“雙十一”網(wǎng)購(gòu)活動(dòng)安排,統(tǒng)計(jì)了2018年“雙十一”期間8個(gè)不同地區(qū)的網(wǎng)購(gòu)顧客用于網(wǎng)購(gòu)的時(shí)間x(單位:小時(shí))作為樣本,得到下表
地區(qū) | ||||||||
時(shí)間 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求該樣本數(shù)據(jù)的平均數(shù);
②通過(guò)大量數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),該活動(dòng)期間網(wǎng)購(gòu)時(shí)間近似服從正態(tài)分布
,如果預(yù)計(jì)2019年“雙十一”期間的網(wǎng)購(gòu)人數(shù)大約為50000人,估計(jì)網(wǎng)購(gòu)時(shí)間
的人數(shù).
(附:若隨機(jī)變量服從正態(tài)分布
則
,
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)為拋物線
的焦點(diǎn),過(guò)點(diǎn)
的直線交拋物線于
、
兩點(diǎn),點(diǎn)
在拋物線上,使得
的重心
在
軸上,直線
交
軸于點(diǎn)
,且
在點(diǎn)
的右側(cè).記
、
的面積分別
、
.
(1)求的值及拋物線的方程;
(2)求的最小值及此時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】以下四個(gè)命題:①設(shè),則
是
的充要條件;②已知命題
、
、
滿足“
或
”真,“
或
”也真,則“
或
”假;③若
,則使得
恒成立的
的取值范圍為{
或
};④將邊長(zhǎng)為
的正方形
沿對(duì)角線
折起,使得
,則三棱錐
的體積為
.其中真命題的序號(hào)為________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn)
,
的“切比雪夫距離”,又設(shè)點(diǎn)
及
上任意一點(diǎn)
,稱
的最小值為點(diǎn)
到直線
的“切比雪夫距離”,記作
,給出下列三個(gè)命題:
①對(duì)任意三點(diǎn)、
、
,都有
;
②已知點(diǎn)和直線
:
,則
;
③到定點(diǎn)的距離和到
的“切比雪夫距離”相等的點(diǎn)的軌跡是正方形.
其中正確的命題有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知兩個(gè)平面垂直,下列命題
①一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無(wú)數(shù)條直線
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面
④過(guò)一個(gè)平面內(nèi)任意一點(diǎn)作交線的垂線,則此垂線必垂直于另一個(gè)平面
其中不正確命題的個(gè)數(shù)是( )
A.3B.2C.1D.0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com