科目: 來源: 題型:
【題目】已知定點,動點
在
軸上運動,過點
作直線
交
軸于點
,延長
至點
,使
.
點
的軌跡是曲線
.
(1)求曲線的方程;
(2)若,
是曲線
上的兩個動點,滿足
,證明:直線
過定點;
(3)若直線與曲線
交于
,
兩點,且
,
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點
,若函數(shù)
滿足:
,都有
,就稱這個函數(shù)是點
的“限定函數(shù)”.以下函數(shù):①
,②
,③
,④
,其中是原點
的“限定函數(shù)”的序號是______.已知點
在函數(shù)
的圖象上,若函數(shù)
是點
的“限定函數(shù)”,則
的取值范圍是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)和
是雙曲線
上的兩點,線段
的中點為
,直線
不經(jīng)過坐標(biāo)原點
.
(1)若直線和直線
的斜率都存在且分別為
和
,求證:
;
(2)若雙曲線的焦點分別為、
,點
的坐標(biāo)為
,直線
的斜率為
,求由四點
、
、
、
所圍成四邊形
的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材曾有介紹:圓上的點
處的切線方程為
。我們將其結(jié)論推廣:橢圓
上的點
處的切線方程為
,在解本題時可以直接應(yīng)用。已知,直線
與橢圓
有且只有一個公共點.
(1)求的值;
(2)設(shè)為坐標(biāo)原點,過橢圓
上的兩點
、
分別作該橢圓的兩條切線
、
,且
與
交于點
。當(dāng)
變化時,求
面積的最大值;
(3)在(2)的條件下,經(jīng)過點作直線
與該橢圓
交于
、
兩點,在線段
上存在點
,使
成立,試問:點
是否在直線
上,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓 :
(
)的離心率
,直線
被以橢圓
的短軸為直徑的圓截得的弦長為
.
(1)求橢圓 的方程;
(2)過點 的直線
交橢圓于
,
兩個不同的點,且
,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}滿足:,且an+1
(n=1,2…)集合M={an|
}中的最小元素記為m.
(1)若a1=20,寫出m和a10的值:
(2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);
(3)證明:當(dāng)且僅當(dāng)時,集合M是有限集.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A,B,C是拋物線W:y2=4x上的三個點,D是x軸上一點.
(1)當(dāng)點B是W的頂點,且四邊形ABCD為正方形時,求此正方形的面積;
(2)當(dāng)點B不是W的頂點時,判斷四邊形ABCD是否可能為正方形,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x+1.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程:
(2)若非零實數(shù)a使得f(x)ax
ax2
對x∈[1,+∞)恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,
底面
,
分別是
的中點,
,
,
.
(I)證明:;
(II)求直線與平面
所成角的正弦值;
(III)在邊上是否存在點
,使
與
所成角的余弦值為
,若存在,確定點
位置;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD是矩形,平面DCC1D1⊥平面ABCD.AD=3,CD=DD1=5,∠D1DC=120°,M,N分別是線段AD1,BD的中點.
(1)求證:MN//平面DCC1D1;
(2)求證:MN⊥平面ADC1;
(3)求三棱錐D1﹣ADC1的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com