科目: 來源: 題型:
【題目】已知橢圓的離心率為
分別為其左、右焦點,
為橢圓
上一點,且
的周長為
.
(1)求橢圓的方程;
(2)過點作關于軸
對稱的兩條不同的直線
,若直線
交橢圓
于一點
,直線
交橢圓
于一點
,證明:直線
過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列四個命題:
①如果平面外一條直線
與平面
內一條直線
平行,那么
;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果一條直線垂直于一個平面內的無數條直線,那么這條直線與這個平面垂直;
④若兩個相交平面都垂直于第三個平面,則這兩個平面的交線垂直于第三個平面.
其中真命題的序號為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】海水養(yǎng)殖場使用網箱養(yǎng)殖的方法,收獲時隨機抽取了 100個網箱,測量各箱水產品的產量(單位:),其產量都屬于區(qū)間
,按如下形式分成5組,第一組:
,第二組:
,第三組:
,第四組:
,第五組:
,得到頻率分布直方圖如圖:
定義箱產量在(單位:
)的網箱為“低產網箱”, 箱產量在區(qū)間
的網箱為“高產網箱”.
(1)若同一組中的每個數據可用該組區(qū)間的中點值代替,試計算樣本中的100個網箱的產量的平均數;
(2)按照分層抽樣的方法,從這100個樣本中抽取25個網箱,試計算各組中抽取的網箱數;
(3)若在(2)抽取到的“低產網箱”及“高產網箱”中再抽取2箱,記其產量分別,求
的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.
(1)求實數a的值;
(2)設g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
為參數),在以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,點
的極坐標為
,直線
的極坐標方程為
.
(1)求直線的直角坐標方程與曲線
的普通方程;
(2)若是曲線
上的動點,
為線段
的中點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,網上購物已經成為人們消費的一種習慣.假設某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價格
(單位:元/件)之間滿足如下的關系式:
為常數.已知銷售價格為
元/件時,每月可售出
千件.
(1)求實數的值;
(2)假設該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數),試確定銷售價格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結果保留一位小數)
查看答案和解析>>
科目: 來源: 題型:
【題目】某高校為增加應屆畢業(yè)生就業(yè)機會,每年根據應屆畢業(yè)生的綜合素質和學業(yè)成績對學生進行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名,其評估成績近似的服從正態(tài)分布
.現隨機抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數據進行了分組,繪制了頻率分布直方圖:
(1)求樣本平均數和樣本方差
(同一組中的數據用該組區(qū)間的中點值作代表);
(2)若學校規(guī)定評估成績超過分的畢業(yè)生可參加
三家公司的面試.
(ⅰ)用樣本平均數作為
的估計值
,用樣本標準差
作為
的估計值
,請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數;
(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李華同學取得了三個公司的面試機會,經過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準備依次從
三家公司進行面試選崗,公司規(guī)定:面試成功必須當場選崗,且只有一次機會.李華在某公司選崗時,若以該崗位工資與未進行面試公司的工資期望作為抉擇依據,問李華可以選擇
公司的哪些崗位?
并說明理由.
附:,若隨機變量
,
則.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數是定義在
上的連續(xù)函數,且在
處存在導數,若函數
及其導函數
滿足
,則函數
( )
A.既有極大值又有極小值B.有極大值 ,無極小值
C.有極小值,無極大值D.既無極大值也無極小值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com