科目: 來源: 題型:
【題目】某市有一特色酒店由一些完全相同的帳篷構(gòu)成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為
(單位:米)的半球體,下層是半徑為
米,高為
米的圓柱體(如圖).經(jīng)測算,上層半球體部分每平方米建造費用為2千元,下方圓柱體的側(cè)面、隔層和地面三個部分平均每平方米建造費用為3千元,設(shè)每座帳篷的建造費用為
千元.
參考公式:球的體積,球的表面積
,其中
為球的半徑.
(1)求關(guān)于
的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)當半徑為何值時,每座帳篷的建造費用最小,并求出最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比
前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比
后多
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的方程為
,過點
的直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)求直線的普通方程與曲線
的直角坐標方程;
(Ⅱ)若直線與曲線
交于
、
兩點,求
的值,并求定點
到
,
兩點的距離之積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).
分數(shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓經(jīng)過兩點
,
,且圓心
在直線
:
上.
(1)求圓的方程;
(2)設(shè)圓與
軸相交于
、
兩點,點
為圓
上不同于
、
的任意一點,直線
、
交
軸于
、
點.當點
變化時,以
為直徑的圓
是否經(jīng)過圓
內(nèi)一定點?請證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖已知橢圓,
是長軸的一個端點,弦
過橢圓的中心
,且
,
.
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)為橢圓上異于
且不重合的兩點,且
的平分線總是垂直于
軸,是否存在實數(shù)
,使得
,若存在,請求出
的最大值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)
(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與
的關(guān)系?并指出是正相關(guān)還是負相關(guān);
(2)①求出關(guān)于
的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,
,
.
參考公式:相關(guān)系數(shù),回歸直線方程
,
其中,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com