科目: 來源: 題型:
【題目】在等腰直角中,
,
,點
、
分別是
、
的中點.現(xiàn)
沿
邊折起成如圖四棱錐
,
為
中點.
(1)證明:面
;
(2)當(dāng)時,求二面角
的平面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,是邊長
,
的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,
、
是
上被切去的小正方形的兩個頂點,設(shè)
.
(1)將長方體盒子體積表示成
的函數(shù)關(guān)系式,并求其定義域;
(2)當(dāng)為何值時,此長方體盒子體積
最大?并求出最大體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)為曲線
上位于第一,二象限的兩個動點,且
,射線
交曲線
分別于
,求
面積的最小值,并求此時四邊形
的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由
個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè)
,若在大正六邊形中隨機(jī)取一點,則此點取自小正六邊形的概率為( )
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的左、右焦點分別是
,
,
,
是其左右頂點,點
是橢圓
上任一點,且
的周長為6,若
面積的最大值為
.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓
于
,
兩個不同點,證明:直線
與
的交點在一條定直線上.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合,對于
,
,定義A與B的差為
;A與B之間的距離為
.
(I)若,試寫出所有可能的A,B;
(II),證明:
(i);
(ii)三個數(shù)中至少有一個是偶數(shù);
(III)設(shè),
中有m(
,且為奇數(shù))個元素,記P中所有兩元素間距離的平均值為
,證明:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在點
處切線的斜率為4,求實數(shù)
的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)在
上是減函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在
處的切線與
軸平行,求
;
(2)已知在
上的最大值不小于
,求
的取值范圍;
(3)寫出所有可能的零點個數(shù)及相應(yīng)的
的取值范圍.(請直接寫出結(jié)論)
查看答案和解析>>
科目: 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com