科目: 來源: 題型:
【題目】已知橢圓的左右兩焦點分別為
、
.
(1)若矩形的邊
在
軸上,點
、
均在
上,求該矩形繞
軸旋轉(zhuǎn)一周所得圓柱側(cè)面積
的取值范圍;
(2)設(shè)斜率為的直線
與
交于
、
兩點,線段
的中點為
(
),求證:
;
(3)過上一動點
作直線
,其中
,過
作直線
的垂線交
軸于點
,問是否存在實數(shù)
,使得
恒成立,若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.
(1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個小正方形的邊長為1,求該塹堵的體積;
(2)在塹堵中,如圖2,
,若
,當(dāng)陽馬
的體積最大時,求二面角
的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】上海地鐵四通八達,給市民出行帶來便利,已知某條線路運行時,地鐵的發(fā)車時間間隔(單位:分字)滿足:
,
,經(jīng)測算,地鐵載客量
與發(fā)車時間間隔
滿足
,其中
.
(1)請你說明的實際意義;
(2)若該線路每分鐘的凈收益為(元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?并求最大凈收益.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于正三角形,挖去以三邊中點為頂點的小正三角形,得到一個新的圖形,這樣的過程稱為一次“鏤空操作“,設(shè)
是一個邊長為1的正三角形,第一次“鏤空操作”后得到圖1,對剩下的3個小正三角形各進行一次“鏤空操作”后得到圖2,對剩下的小三角形重復(fù)進行上述操作,設(shè)
是第
次挖去的小三角形面積之和(如
是第1次挖去的中間小三角形面積,
是第2次挖去的三個小三角形面積之和),
是前
次挖去的所有三角形的面積之和,則
( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如,在不超過13的素數(shù)中,隨機選取兩個不同的數(shù),其和為偶數(shù)的概率是________(用分?jǐn)?shù)表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),
.
(1)求函數(shù)的極小值;
(2)設(shè)函數(shù),討論函數(shù)在
上的零點的個數(shù);
(3)若存在實數(shù),使得對任意
,不等式
恒成立,求正整數(shù)
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)x萬件,需另投入流動成本C(x)萬元,當(dāng)年產(chǎn)量小于7萬件時,C(x)=x2+2x(萬元);當(dāng)年產(chǎn)量不小于7萬件時,C(x)=6x+1nx+
﹣17(萬元).已知每件產(chǎn)品售價為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.
(1)寫出年利潤P(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;(注:年利潤=年銷售收人﹣固定成本﹣流動成本
(2)當(dāng)年產(chǎn)量約為多少萬件時,該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?(取e3≈20)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com