科目: 來源: 題型:
【題目】如圖,已知圓柱內(nèi)有一個三棱錐,
為圓柱的一條母線,
,
為下底面圓
的直徑,
,
.
(1)在圓柱的上底面圓內(nèi)是否存在一點,使得
平面
?證明你的結(jié)論.
(2)設(shè)點為棱
的中點,
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一個由正四棱錐和正四棱柱
構(gòu)成的組合體,正四棱錐的側(cè)棱長為6,
為正四棱錐高的4倍.當(dāng)該組合體的體積最大時,點
到正四棱柱
外接球表面的最小距離是( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司以客戶滿意為出發(fā)點,隨機抽選2000名客戶,以調(diào)查問卷的形式分析影響客戶滿意度的各項因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標(biāo)系表示,左邊縱坐標(biāo)表示頻數(shù),右邊縱坐標(biāo)表示頻率,分析線表示累計頻率,橫坐標(biāo)表示影響滿意度的各項因素,按影響程度(即頻數(shù))的大小從左到右排列,以下結(jié)論正確的個數(shù)是( ).
①35.6%的客戶認為態(tài)度良好影響他們的滿意度;
②156位客戶認為使用禮貌用語影響他們的滿意度;
③最影響客戶滿意度的因素是電話接起快速;
④不超過10%的客戶認為工單派發(fā)準(zhǔn)確影響他們的滿意度.
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線
:
上的點按坐標(biāo)變換
,得到曲線
,
為
與
軸負半軸的交點,經(jīng)過點
且傾斜角為
的直線
與曲線
的另一個交點為
,與曲線
的交點分別為
,
(點
在第二象限).
(Ⅰ)寫出曲線的普通方程及直線
的參數(shù)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線:
上一點
到其焦點
的距離為2.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)拋物線的準(zhǔn)線與
軸交于點
,直線
過點
且與拋物線
交于
,
兩點(點
在點
,
之間),點
滿足
,求
與
的面積之和取得最小值時直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某流行病爆發(fā)期間,某市衛(wèi)生防疫部門給出的治療方案中推薦了三種治療藥物,
,
(
,
,
的使用是互斥且完備的),并且感染患者按規(guī)定都得到了藥物治療.患者在關(guān)于這三種藥物的有關(guān)參數(shù)及市場調(diào)查數(shù)據(jù)如下表所示:(表中的數(shù)據(jù)都以一個療程計)
| |||
單價(單位:元) | 600 | 1000 | 800 |
治愈率 | |||
市場使用量(單位:人) | 305 | 122 | 183 |
(Ⅰ)從感染患者中任取一人,試求其一個療程被治愈的概率大約是多少?
(Ⅱ)試估算每名感染患者在一個療程的藥物治療費用平均是多少.
查看答案和解析>>
科目: 來源: 題型:
【題目】惰性氣體分子為單原子分子,在自由原子情形下,其電子電荷分布是球?qū)ΨQ的.負電荷中心與原子核重合,但如兩個原子接近,則彼此能因靜電作用產(chǎn)生極化(正負電荷中心不重合),從而導(dǎo)致有相互作用力,這稱為范德瓦爾斯相互作用.今有兩個相同的惰性氣體原子,它們的原子核固定,原子核正電荷的電荷量為,這兩個相距為
的惰性氣體原子組成體系的能量中有靜電相互作用能
,其中
為靜電常量,
,
分別表示兩個原子負電中心相對各自原子核的位移,且
和
都遠小于
,當(dāng)
遠小于1時,
,則
的近似值為( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們正處于一個大數(shù)據(jù)飛速發(fā)展的時代,對于大數(shù)據(jù)人才的需求也越來越大,其崗位大致可分為四類:數(shù)據(jù)開發(fā)、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)產(chǎn)品.某市2019年這幾類工作崗位的薪資(單位:萬元/月)情況如下表所示:
薪資 崗位 | ||||
數(shù)據(jù)開發(fā) | ||||
數(shù)據(jù)分析 | ||||
數(shù)據(jù)挖掘 | ||||
數(shù)據(jù)產(chǎn)品 |
由表中數(shù)據(jù)可得該市各類崗位的薪資水平高低情況為( )
A.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析
B.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析
C.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析>數(shù)據(jù)產(chǎn)品
D.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析>數(shù)據(jù)開發(fā)
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若,求
的極坐標(biāo)方程;
(2)若與
恰有4個公共點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)拋物線的焦點為
,直線
與拋物線交于
兩點.
(1)若過點
,且
,求
的斜率;
(2)若,且
的斜率為
,當(dāng)
時,求
在
軸上的截距的取值范圍(用
表示),并證明
的平分線始終與
軸平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com