科目: 來源: 題型:
【題目】已知為圓
上一點(diǎn),過點(diǎn)
作
軸的垂線交
軸于點(diǎn)
,點(diǎn)
滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)為直線
上一點(diǎn),
為坐標(biāo)原點(diǎn),且
,求
面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,
(l)設(shè)為參數(shù),若
,求直線
的參數(shù)方程;
(2)已知直線與曲線
交于
,
設(shè)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓:
的左頂點(diǎn)為
,上頂點(diǎn)為
,直線
與直線
垂直,垂足為
點(diǎn),且點(diǎn)
是線段
的中點(diǎn).
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點(diǎn),點(diǎn)
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據(jù)題意可得,
故斜率為
,由直線
與直線
垂直,可得
,因?yàn)辄c(diǎn)
是線段
的中點(diǎn),∴點(diǎn)
的坐標(biāo)是
,
代入直線得,連立方程即可得
,
;(2)∵四邊形
為平行四邊形,∴
,設(shè)
,
,
,∴
,得
,將
點(diǎn)坐標(biāo)代入橢圓
方程得
,
點(diǎn)到直線
的距離為
,利用弦長公式得EF,則平行四邊形
的面積為
.
解析:(1)由題意知,橢圓的左頂點(diǎn)
,上頂點(diǎn)
,直線
的斜率
,
得,
因?yàn)辄c(diǎn)是線段
的中點(diǎn),∴點(diǎn)
的坐標(biāo)是
,
由點(diǎn)在直線
上,∴
,且
,
解得,
,
∴橢圓的方程為
.
(2)設(shè),
,
,
將代入
消去
并整理得
,
則,
,
,
∵四邊形為平行四邊形,∴
,
得,將
點(diǎn)坐標(biāo)代入橢圓
方程得
,
點(diǎn)到直線
的距離為
,
,
∴平行四邊形的面積為
.
故平行四邊形的面積
為定值
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(2)當(dāng)時(shí),求證:函數(shù)
有兩個(gè)不相等的零點(diǎn)
,
,且
.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)的部分圖象大致是( )
A. B.
C. D.
【答案】D
【解析】當(dāng)時(shí),
,所以去掉A,B;
因?yàn)?/span>,所以
,因此去掉C,選D.
點(diǎn)睛:有關(guān)函數(shù)圖象識(shí)別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實(shí)際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題求解,要注意實(shí)際問題中的定義域問題.
【題型】單選題
【結(jié)束】
8
【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com