科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,證明:函數(shù)
在
上單調(diào)遞減;
(Ⅱ)是否存在實數(shù),使得函數(shù)
在
內(nèi)存在兩個極值點?若存在,求實數(shù)
的取值范圍;若不存在,請說明理由. (參考數(shù)據(jù):
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,
平面
,
是等腰三角形,
,
是
的一個三等分點(靠近點
),
與
的延長線交于點
,連接
.
(1)求異面直線與
所成角的余弦值;
(2)求二面角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設(shè)備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且
,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額
成本)
(2)2019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)常數(shù)
)滿足
.
(1)求出的值,并就常數(shù)
的不同取值討論函數(shù)
奇偶性;
(2)若在區(qū)間
上單調(diào)遞減,求
的最小值;
(3)在(2)的條件下,當取最小值時,證明:
恰有一個零點
且存在遞增的正整數(shù)數(shù)列
,使得
成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知.
(1)當時,解不等式
;
(2)若關(guān)于的方程
的解集中恰好有一個元素,求實數(shù)
的值;
(3)設(shè),若對任意
,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過
,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若函數(shù)的圖象經(jīng)過變換
后所得的圖象對應(yīng)的函數(shù)與
的值域相同,則稱變換
是
的同值變換,下面給出了四個函數(shù)與對應(yīng)的變換:①
,
將函數(shù)
的圖象關(guān)于直線
作對稱變換;②
,
將函數(shù)
的圖象關(guān)于
軸作對稱變換;③
,
將函數(shù)
的圖象關(guān)于點
作對稱變換;④
,
將函數(shù)
的圖象關(guān)于點
作對稱變換.其中
是
的同值變換的有__________(寫出所有符合題意的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和
的直角坐標方程;
(2)設(shè)是曲線
上一點,此時參數(shù)
,將射線
繞原點
逆時針旋轉(zhuǎn)
交曲線
于點
,記曲線
的上頂點為點
,求
的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),
,
為自然對數(shù)的底數(shù).
(1)當時,證明:
,
;
(2)若函數(shù)在
上存在兩個極值點,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com