科目: 來源: 題型:
【題目】一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項數(shù)):第一行是以4為首項,4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:
;
為數(shù)表中第
行的第
個數(shù).
…
…
…
……
(1)求第2行和第3行的通項公式和
;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于
的表達(dá)式;
(3)若,
,試求一個等比數(shù)列
,使得
,且對于任意的
,均存在實數(shù)
,當(dāng)
時,都有
.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線的方程為
,過拋物線
上一點
作斜率為
的兩條直線分別交拋物線
于
兩點(
三點互不相同),且滿足
:
(1)求拋物線的焦點坐標(biāo)和準(zhǔn)線方程;
(2)當(dāng)時,若點
的坐標(biāo)為
,求
為鈍角時點
的縱坐標(biāo)
的取值范圍;
(3)設(shè)直線上一點
,滿足
,證明線段
的中點在
軸上;
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設(shè)a>0,函數(shù)g(x)= |f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 是邊長為
的正方形,平面
平面
,
,
,
,
.
(1)求證:面面
;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點
,使得二面角
的大小為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于雙曲線,若點P(x0,y0)滿足
,則稱P在
的外部,若點P(x0,y0)滿足
>1,則稱
在的內(nèi)部;
(1)若直線y=kx+1上的點都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過點(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點構(gòu)成的圓弧長等于該圓周長的一半,求b、r滿足的關(guān)系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點都在C(a,b)的外部,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的通項公式為 an=(n﹣k1)(n﹣k2),其中k1,k2∈Z:
(1)試寫出一組k1,k2∈Z的值,使得數(shù)列{an}中的各項均為正數(shù);
(2)若k1=1、k2∈N*,數(shù)列{bn}滿足bn=,且對任意m∈N*(m≠3),均有b3<bm,寫出所有滿足條件的k2的值;
(3)若0<k1<k2,數(shù)列{cn}滿足cn=an+|an|,其前n項和為Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且僅有4組,S1、S2、…、Sn中至少3個連續(xù)項的值相等,其他項的值均不相等,求k1,k2的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小凳凳面為圓形,凳腳為三根細(xì)鋼管.考慮到鋼管的受力等因素,設(shè)計的小凳應(yīng)滿足:三根細(xì)鋼管相交處的節(jié)點與凳面圓形的圓心
的連線垂直于凳面和地面,且
分細(xì)鋼管上下兩段的比值為
,三只凳腳與地面所成的角均為
.若
、
、
是凳面圓周的三等分點,
厘米,求凳子的高度
及三根細(xì)鋼管的總長度(精確到
).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、B是海岸線OM、ON上兩個碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、
,測得
,
,以點O為坐標(biāo)原點,射線OM為x軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以
小時的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點Q).
(1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?
(2)海中有一處景點P(設(shè)點P在平面內(nèi),
,且
),游輪無法靠近,求游輪在水上旅游線AB航行時離景點P最近的點C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com