科目: 來源: 題型:
【題目】已知命題:“若,
為異面直線,平面
過直線
且與直線
平行,則直線
與平面
的距離等于異面直線
,
之間的距離”為真命題.根據(jù)上述命題,若
,
為異面直線,且它們之間的距離為
,則空間中與
,
均異面且距離也均為
的直線
的條數(shù)為( )
A.0條B.1條C.多于1條,但為有限條D.無數(shù)多條
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:(
)的焦距為
,且右焦點F與短軸的兩個端點組成一個正三角形.若直線l與橢圓C交于
、
,且在橢圓C上存在點M,使得:
(其中O為坐標(biāo)原點),則稱直線l具有性質(zhì)H.
(1)求橢圓C的方程;
(2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;
(3)求證:在橢圓C上不存在三個不同的點P、Q、R,使得直線、
、
都具有性質(zhì)H.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列和
滿足:
,
,
且對一切
,均有
.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列
的通項公式;
(2)求數(shù)列的前
項和
;
(3)設(shè),記數(shù)列
的前
項和為
,求正整數(shù)
,使得對任意
,均有
.
查看答案和解析>>
科目: 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合函數(shù)
,函數(shù)
的值域為
,
(1)若不等式的解集為
,求
的值;
(2)在(1)的條件下,若恒成立,求
的取值范圍;
(3)若關(guān)于的不等式
的解集
,求實數(shù)
的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓與長軸是短軸兩倍的橢圓
:
相切于點
(1)求橢圓與圓
的方程;
(2)過點引兩條互相垂直的兩直線
與兩曲線分別交于點
與點
(均不重合).若
為橢圓上任一點,記點
到兩直線的距離分別為
,求
的最大值,并求出此時
的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓與長軸是短軸兩倍的橢圓
:
相切于點
(1)求橢圓與圓
的方程;
(2)過點引兩條互相垂直的兩直線
與兩曲線分別交于點
與點
(均不重合).若
為橢圓上任一點,記點
到兩直線的距離分別為
,求
的最大值,并求出此時
的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合函數(shù)
,函數(shù)
的值域為
,
(1)若不等式的解集為
,求
的值;
(2)在(1)的條件下,若恒成立,求
的取值范圍;
(3)若關(guān)于的不等式
的解集
,求實數(shù)
的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com