科目: 來源: 題型:
【題目】某校需從甲、乙兩名學生中選一人參加物理競賽,這兩名學生最近5次的物理競賽模擬成績?nèi)缦卤恚?/span>
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
學生甲的成績(分) | 80 | 85 | 71 | 92 | 87 |
學生乙的成績(分) | 90 | 76 | 75 | 92 | 82 |
(1)根據(jù)成績的穩(wěn)定性,現(xiàn)從甲、乙兩名學生中選出一人參加物理競賽,你認為選誰比較合適?
(2)若物理競賽分為初賽和復賽,在初賽中有如下兩種答題方案:方案1:每人從5道備選題中任意抽出1道,若答對,則可參加復賽,否則被淘汰;方案2:每人從5道備選題中任意抽出3道,若至少答對其中2道,則可參加復賽,否則被淘汰.若學生乙只會5道備選題中的3道,則學生乙選擇哪種答題方案進入復賽的可能性更大?
查看答案和解析>>
科目: 來源: 題型:
【題目】圓周率是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù),它既常用又神秘,古今中外很多數(shù)學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構成一個銳角三角形的三邊,最后把結論告訴你,只需將每個人的結論記錄下來就能算出圓周率的近似值.假設有
個人說“能”,而有
個人說“不能”,那么應用你學過的知識可算得圓周率
的近似值為()
A. B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設,
為正整數(shù),一個正整數(shù)數(shù)列
滿足
.對
,定義集合
.數(shù)列
中的
是集合
中元素的個數(shù).
(1)若數(shù)列為5,3,3,2,1,1,寫出數(shù)列
;
(2)若,
,
為公比為
的等比數(shù)列,求
;
(3)對,定義集合
,令
是集合
中元素數(shù)的個數(shù).求證:對
,均有
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的最小值為0,求
的值;
(2)設,求函數(shù)
的單調(diào)區(qū)間;
(3)設函數(shù)與函數(shù)
的圖像的一個公共點為
,若過點
有且僅有一條公切線,求點
的坐標及實數(shù)
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中, 平面
平面
,
.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在點
,使得
平面
?若存在, 求
的值;若不存在, 說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2,a3-2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,側面
底面
,四邊形
是邊長為2的菱形,
,
,
,E,F分別為AC,
的中點.
(1)求證:直線EF∥平面;
(2)設分別在側棱
,
上,且
,求平面BPQ分棱柱所成兩部分的體積比.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻數(shù) | ||||||
支持“生二胎” |
(1)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有
的把握認為以
歲為分界點對“生育二胎放開”政策的支持度有差異;
年齡不低于 | 年齡低于 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com